Théorie Financière
2009-2010

1. Introduction –
Fondements certitude

Professeur André Farber
Organisation du cours

Brealey, R., Myers, S. and Allen, F. (BMA)
Principle of Corporate Finance

Berk, J. and P. DeMarzo
Corporate Finance
Pearson 2007

Farber, A. Laurent, M-P., Oosterlinck, K., Pirotte, H. (FLOP)
Finance

Site web: www.ulb.ac.be/cours/solvay/farber
Examen(s)
Exercices

- Assistants:
 - Benoit Dewaele
 - Benjamin Lorent
- 6 séances (Vendredi 10-12), 4 groupes
 - Groupe 1: A à F
 - Groupe 2: G à L
 - Groupe 3: M à P
 - Groupe 4: Q à Z

 Semaines 2, 4, 6, 9, 11, 13

 Semaines 3, 5, 8, 10, 12, 14
Plan du cours

• 1. Introduction - Fondements
• 2. Valeur actuelle
• 3. Cash flows, planning financier
• 4. Evaluation d’entreprises
• 5,6. Analyse de projets d’investissement
• 7,8. Rentabilité attendue et risque
• 9,10. Options
• 11, 12. Evaluation et financement
What is Corporate Finance?

• **INVESTMENT DECISIONS**: Which REAL ASSETS to buy?
 - *Real assets*: will generate future cash flows to the firm
 - Intangible assets: R&D, Marketing,..
 - Tangible assets: Real estate, Equipments,..
 - Current assets: Inventories, Account receivables,..

• **FINANCING DECISIONS**: Which FINANCIAL ASSET to sell?
 - *Financial assets*: claims on future cash flows
 - Debt: promise to repay a fixed amount
 - Equity: residual claim

• **DIVIDEND DECISION**: How much to return to stockholders?
Accounting View of the Firm

- **Balance sheet**
 - Current assets
 - Net Working Capital
 - Current liabilities
 - Long-term debt
 - Shareholders’ equity

- **Income statement**
 - Sales
 - Operating expenses
 - = Earnings before interest and taxes (EBIT)
 - Interest expenses
 - Taxes
 - = Net income (earnings after taxes)
 - Retained earnings
 - Dividend payments
Cash Flows of the Firm

Firm invest

Cash flow from operations

Firm

Firm issue securities

Financial markets

Dividend and debt payments

Investors

Timing of cash flows + uncertainty
Market Value of the Firm

- Book values
 - Total capital
 - Fixed Assets + Net Working Capital
 - Book equity
 - Debt

- Market values
 - Market value of equity
 - Market capitalization
 - Market value of debt
Value creation

- Market value added (MVA)
 - = Market value of the firm’s capital – Total capital employed

 \[
 \text{Market value of equity} + \text{Market value of debt} = \text{Stockholders’ equity} + \text{Financial debt}
 \]

- VALUE CREATION : 2 strategies
 - **Strategy 1**
 - Buy assets at a cost lower than the value of the future revenues
 - real assets
 - financial assets

 - **Strategy 2**
 - Sell financial assets for a price higher than the value of future payments
Examples (Aug. 30, 2009)

<table>
<thead>
<tr>
<th></th>
<th>Microsoft</th>
<th>Wal-Mart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Cap $billion</td>
<td>219.92</td>
<td>198.95</td>
</tr>
<tr>
<td>Capitalisation boursière (milliards USD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholders’ Equity $b</td>
<td>39.56</td>
<td>65.29</td>
</tr>
<tr>
<td>Fonds propres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenues ($b)</td>
<td>58.44</td>
<td>405.61</td>
</tr>
<tr>
<td>Chiffre d’affaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Income $b</td>
<td>14.57</td>
<td>13.40</td>
</tr>
<tr>
<td>Résultat net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price/Book</td>
<td>5.56</td>
<td>3.05</td>
</tr>
<tr>
<td>Return on Equity (ROE)</td>
<td>36.83%</td>
<td>20.52%</td>
</tr>
<tr>
<td>Price-Earnings Ratio (P/E)</td>
<td>15.09</td>
<td>14.85</td>
</tr>
</tbody>
</table>
The Cost of Capital

- The firm can always give cash back to the shareholders

- Capital employed by the firm has an **opportunity cost**
- The opportunity **cost of capital** is the expected rate of return offered by equivalent investments in the capital market
- The **weighted average cost of capital** (WACC) is the (weighted) average of the cost of equity and of the cost of debt
Stockholders’ problem

Company

ROE
Return on Equity

Capital market

Expected return

\[ROE = \frac{\text{Net Income}}{\text{Stockholders' equity}} \]

\[r = \frac{\text{Div}_1 + \text{Capital Gain}}{\text{Initial Investment}} \]
How to measure value creation?

1. Compare market value of equity to book value

\[
\text{Market-to-book (M/B)} = \frac{\text{Stock price}}{\text{Book value per share}}
\]

- Value creation if M/B > 1

2. Compare return on equity to the opportunity cost of equity

\[
\text{Return on equity (ROE)} = \frac{\text{Net Income}}{\text{Stockholders' equity}}
\]

- Value creation if ROE > Opportunity Cost of Equity
Value creation: Example

- Data:
 - Book value of equity = €10 b
 - Net income = €2 b/year
 - Cost of equity \(r = 10\% \)

- Return on equity ROE = \(2 / 10 = 20\% \) > 10\%

- Market value of equity = \(NI / r = 2 / 10\% = €20 b \)
- Market value added: MVA = 20 – 10 = €10 b
- Market to Book \(M/B = 20 / 10 = 2 \)
M/B vs ROE

- **Simplifying assumptions:**
 - Expected net income = constant
 - Net income = dividend

- **Market value determination:**
 - Net income = Expected return × Market value of equity
 - \(NI = r \times MV_{eq} \)

- **ROE (definition):**
 - Return on equity = Net income / Book value of equity
 - \(ROE = \frac{NI}{BV_{eq}} \)
 - \(= \frac{r \times MV_{eq}}{Bveq} \)

- **Conclusion:** in this simplified setting,
 - \(M/B = \frac{MV_{eq}}{BV_{eq}} > 1 \iff ROE > r \)
Drivers of ROE

• PROFITABILITY (du Pont system)

\[ROE = \frac{\text{Net Income}}{\text{Book Equity}} \]

• Three determinants:

\[ROE = \frac{\text{Net Income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Assets}} \times \frac{\text{Assets}}{\text{Equity}} \]

- Profit Margin
- Asset Turnover
- Financial Leverage
Example (Aug. 30, 2009)

<table>
<thead>
<tr>
<th></th>
<th>Microsoft</th>
<th>WalMart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>58.44</td>
<td>405.61</td>
</tr>
<tr>
<td>Net Income</td>
<td>14.57</td>
<td>13.4</td>
</tr>
<tr>
<td>Total Assets</td>
<td>77.89</td>
<td>163.43</td>
</tr>
<tr>
<td>Book Equity</td>
<td>39.56</td>
<td>65.29</td>
</tr>
<tr>
<td>ROE</td>
<td>36.83%</td>
<td>20.52%</td>
</tr>
<tr>
<td>Profit margin</td>
<td>24.93%</td>
<td>3.30%</td>
</tr>
<tr>
<td>Asset Turnover</td>
<td>0.75</td>
<td>2.48</td>
</tr>
<tr>
<td>Leverage</td>
<td>1.97</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Foundations of Finance
• A young science
• Finance has been around for many centuries, of course…
• Main problem: calculation!!
• Imagine having to calculate the future value of 1 euro invested for 13 years when the annual interest rate is 4.35% (with annual compounding):

\[\text{Future value} = (1.0435)^{13} \]

• A nightmare…..
• This problem disappeared after WWII with the development of computers.
• Now we have calculators and spreadsheets…..
• We also have large data bases
Irving Fisher

• Finance has its roots in economics
• Irving Fisher laid the foundations of modern theory of finance.
• Takes into account the time dimension of financial decisions
• Main ideas:
 • Decisions should be based on present value
 • Net Present Value (NPV): a measure of additional wealth
 • With perfect capital markets: independent of preferences
Present value: 1 period, certainty

- Perfect capital market
- Risk-free interest rate: r_f
- Future cash flow C_1
- Present value:
 \[PV(C_1) = \frac{C_1}{1 + r_f} \]

 or:
 \[PV(C_1) = v_1 \times C_1 \]

 with \[v_1 = \frac{1}{1 + r_f} \]

Interpretation: $v_1 = 1$-year discount factor
price of 1€ to be received in one year
price of unit 1-year zero coupon
Using present value: 1-year bond valuation

Consider a risk-free zero coupon bond:

- Face value = 100
- Maturity = 1 year

Suppose 1-year risk-free interest rate = 5%

How much would you be willing to pay for this bond?

\[P_0 = \frac{100}{1.05} = 100 \times 0.9524 = 95.24 \]
No arbitrage – 1st pass

If $P_0 \neq 95.24$: arbitrage opportunity

Suppose $P_0 = 95.50$

$\begin{align*}
t = 0 & \\
\text{Sell one bond} & + 95.50 \\
\text{Invest} & - 95.24 \\
\text{Total} & = 0.26
\end{align*}$

$\begin{align*}
t = 1 & \\
& - 100 \\
& + 100 \\
& = 0
\end{align*}$

NO FREE LUNCH
There are no arbitrage opportunities in competitive markets

Suppose $P_0 = 95$

$\begin{align*}
t = 0 & \\
\text{Buy one bond} & - 95.00 \\
\text{Borrow} & + 95.24 \\
\text{Total} & = 0.24
\end{align*}$

$\begin{align*}
t = 1 & \\
& + 100 \\
& - 100 \\
& = 0
\end{align*}$
Microeconomics: a review

• Consumption over time:
 • 1 periods, certainty
 • Perfect capital markets => budget constraint

\[Q_0 + \frac{Q_1}{1 + r_f} = Y_0 + \frac{Y_1}{1 + r_f} = W_0 \]

\[Q_0 + \nu_1 \times Q_1 = W_0 \]

» Slope = -(1+r)

» Intercept = W_0(1+r)

• Optimum:
 » Marginal Rate of Substitution (MRS) = 1+r
 » Optimal consumption independent of timing of income
Economic foundations of net present value

I. Fisher 1907, J. Hirshleifer 1958

Perfect capital markets
Separate investment decisions from consumption decisions

\[
\text{Slope} = - (1 + r_f) = - (1 + 5\%)
\]
Suppose the risk-free rate is $r_f = 5\%$

Consider the following investment project:

Initial cost: I (50)

Future cash flow: C_1 (60)

\[
NPV = -I + v_1 \times C_1 \\
= -50 + 0.9524 \times 60 \\
= 7.14
\]

Budget constraint with project:

\[
Q_0 + v_1 Q_1 = (Y_0 - I) + v_1 (Y_1 + C_1) = W_0 + NPV
\]
Fisher Separation Theorem

I. Fisher 1907, J. Hirshleifer 1958

Perfect capital markets

Investment decision independent of:
- initial allocation
- preferences (utility functions)

\[
\text{Slope} = - (1 + r) = - (1 + 5\%)
\]
Internal Rate of Return

- Alternative rule: compare the internal rate of return for the project to the opportunity cost of capital
- Definition of the Internal Rate of Return: IRR (1-period)
 \[\text{IRR} = \frac{\text{Profit}}{\text{Investment}} = \frac{C_1 - I}{I} \]
- In our example:
 \[\text{IRR} = \frac{60 - 50}{50} = 20\% \]

- The Rate of Return Rule: Invest if IRR > r

- In this simple setting, the NPV rule and the Rate of Return Rule lead to the same decision:

 - NPV = \(-I + \frac{C_1}{1+r}\) > 0 ⇔ \(C_1 > I(1+r)\) ⇔ \(\frac{C_1 - I}{I} > r\) ⇔ IRR > r
IRR: a general definition

- The Internal Rate of Return is the discount rate such that the NPV is equal to zero.

\[-I + \frac{C}{1+IRR} \equiv 0\]

- In our example:
 - \(-50 + \frac{60}{1+IRR} = 0\)
 - \(\Rightarrow IRR = 20\%\)
Suppose an all equity financed company is created for this project.

Step 1: Creation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Equity</th>
<th>Cash flows</th>
<th>Market Cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$t = 0$</td>
<td>$t = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-50</td>
<td>+60</td>
</tr>
</tbody>
</table>

\[
NPV = -50 + \frac{60}{1.05} = 7.14
\]

Step 2: Equity offering + investment

<table>
<thead>
<tr>
<th>Assets</th>
<th>Equity</th>
<th>Cash flows</th>
<th>I+NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>$t = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t = 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+60</td>
<td></td>
</tr>
</tbody>
</table>

\[
I+NPV = \frac{60}{1.05} = 57.14
\]
Suppose that the company borrows 40 to finance part of the project.

Step 1: Creation

<table>
<thead>
<tr>
<th>Assets</th>
<th>Equity</th>
<th>Cash flows to equity</th>
<th>Market Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$t = 0$ $t = 1$</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>+60</td>
<td>$-10 + 60 - 42 = 18$</td>
<td>Equity = $-10 + \frac{18}{1.05} = 7.14$</td>
</tr>
</tbody>
</table>

Step 2: Borrow + investment

<table>
<thead>
<tr>
<th>Assets</th>
<th>Equity</th>
<th>Debt</th>
<th>Cash flows to equity</th>
<th>Market Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>10</td>
<td>40</td>
<td>$t = 0$ $t = 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+18</td>
<td>+42</td>
<td></td>
<td>Equity = $\frac{18}{1.05} = 17.14$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Debt = $\frac{42}{1.05} = 40$</td>
</tr>
</tbody>
</table>

Enterprise = 57.14
Entreprise Value Maximisation

Numerical example

\[r = 5\% \]

<table>
<thead>
<tr>
<th>Project</th>
<th>(CF_0)</th>
<th>(CF_1)</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-100</td>
<td>115</td>
<td>9.5</td>
</tr>
<tr>
<td>2</td>
<td>-100</td>
<td>110</td>
<td>4.8</td>
</tr>
<tr>
<td>3</td>
<td>-100</td>
<td>105</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>-100</td>
<td>103</td>
<td>-1.9</td>
</tr>
</tbody>
</table>

\[CF_1 \quad \text{MktVal} \quad \text{Inv} \quad \text{NPV} \]

<table>
<thead>
<tr>
<th></th>
<th>115</th>
<th>109.5</th>
<th>100</th>
<th>9.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>225</td>
<td>214.3</td>
<td>200</td>
<td>14.3</td>
</tr>
<tr>
<td>1,2,3</td>
<td>330</td>
<td>314.3</td>
<td>300</td>
<td>14.3</td>
</tr>
<tr>
<td>1,2,3,4</td>
<td>433</td>
<td>412.4</td>
<td>400</td>
<td>12.4</td>
</tr>
</tbody>
</table>

September 15, 2009