

A World Without Mangroves?

Emerging from the embrace of a mangrove tree-lined channel in northern Brazil, these pescadores, like coastal fishers worldwide, know that healthy mangroves mean good fishing and a secure livelihood.

Mangrove forests once covered more than 200,000 km² of sheltered tropical and subtropical coastlines (1). They are disappearing worldwide by 1 to 2% per year, a rate greater than or equal to declines in adjacent coral reefs or tropical rainforests (2–5). Losses are occurring in depth (44), in or near mangroves would lose access to sources of essential food, fibers, timber, chemicals, and medicines (14). We are greatly concerned that the full implications of mangrove loss for humankind are not fully appreciated. Growing pressures of urban and industrial developments along coastlines, combined with climate change and sea-level rise, urge the need to conserve, protect, and restore tidal wetlands (11, 13). Effective governance structures, socioeconomic risk policies, and education strategies (15) are needed now to enable societies around the world to reverse the trend of mangrove loss and ensure that future generations enjoy the ecosystem services provided by such valuable natural ecosystems.


1Centre for Marine Studies, University of Queensland, St Lucia, Qld 4072, Australia. 2Australian Rivers Institute and School of Environment, PMB 50 GCMC, Griffith University, Qld 9726, Australia. 3School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia. 4Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA. 5Alfred-Wegener-Institut für Polar- und Meeresforschung, Karpfenpromenade, D-27498 Helgoland, Germany. 6Technical University Dresden, Institut für Waldwachstum und Forstliche Informatik, Postfach 1117 01735 Tharandt, Germany. 7Dipartimento di Biologia Animale e Genetica “Leo Pardi,” Università degli Studi di Firenze, Via Romana, 17, I-50125 Firenze, Italy. 8Center for Tropical Marine Ecology, Fahrenheitstraße 6, 28359 Bremen, Germany. 9U.S. Department of Agriculture Forest Service, 2126 NW 7th Lane, Gainesville, FL 32603, USA. 10Faculty of Science (Gore Hill), University of Technology, Sydney, Post Office Box 123, Broadway NSW 2007, Australia. 11Laboratory of General Botany and Nature Management, Mangrove Management Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. 12LGPMC, EA 3325, University of New Caledonia, Noumea, New Caledonia, and UR 103, Institut de Recherche pour le Développement (IRD), Marseille, France. 13Biocomplexity Research Focus, U/S Laboratory of General Botany and Nature Management, Mangrove Management Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.

*To whom correspondence should be addressed. E-mail: N.C.Duke@curie.futur.eau, J.O.Meynecke@flinders.edu.au, S.Dittmann@csqu.edu.au, A.M.Ellison@fas.harvard.edu, K.Anger@uq.edu.au, U.Berger@flinders.edu.au, S.Cannicci@curie.futur.eau, K.Diele@uni-muenster.de, K.C.Ewel@fas.harvard.edu, C.D.Field@curie.futur.eau, N.Koedam@vub.be, S.Y.Lee@flinders.edu.au, C.Marchand@vub.be, I.Nordhaus@griffith.edu.au, F.Dahdouh-Guebars@vub.be.
Indeed, as student researchers and editors with interests in scientific and related research careers, we have experienced first-hand the demands of scientific review and editing (data processing, information search, writing, and editing). These skills are otherwise missed when students do not engage in original research. A low level of communication is common when students are not involved in research projects, and they are not given the opportunity to practice scientific communication. The benefits include the opportunity to communicate with scientists from the research foundation - Flanders (FWO), we hosted a workshop for science writing. We also provided relevant organic gases in the dynamic headspace to seawater concentration, we use the water would have if the headspace were static. To convert from mixing ratio of static to believed that isoprene is not the reason for increased cloud reflectivity resulting from a 30% decrease in cloud droplet effective radius and a doubling of cloud droplet number concentration over a large phytoplankton bloom. Our measurements of isoprene flux produced in the bloom. Our measurements were not able to believe that isoprene is not the reason for increased cloud reflectivity resulting from a 30% decrease in cloud droplet effective radius and a doubling of cloud droplet number concentration over a large phytoplankton bloom.

We thank Wingenter for his letter.

References and Notes

16. The 2006 Australian mangrove meetings (MMM) at the University of Queensland, Griffith University, James Cook University, Queensland Department of Primary Industries and Fisheries, and the Ian Potter Foundation. We thank our funding sources for their support of our research on mangroves; F.D.G. is a Postdoctoral Research Scientist from the Research Foundation - Flanders (FWO-Vlaanderen). S.C.'s research is funded by the PUMPSEA project (EU 6th FP). A.M.E.'s research is supported by the Harvard Forest and by the U.S. NSF.