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Analysis of the spatial genetic structure within continuous populations in their natural habitat can
reveal acting evolutionary processes. Spatial autocorrelation statistics are often used for this purpose,
but their relationships with population genetics models have not been thoroughly established.
Moreover, it has been argued that the dependency of these statistics on variation in mutation rates
among loci strongly limits their interest for inferential purposes. In the context of an isolation by
distance process, we describe relationships between a descriptor of the spatial genetic structure used in
empirical studies, Moran's I statistic and population genetics parameters. In particular, we point out
that, when Moran's I statistic is used to describe correlation in allele frequencies at the individual
level, it provides an estimator of Wright's coe�cient of relationship. We also show that the latter
parameter, as a descriptor of genetic structure, is not in¯uenced by sel®ng rate or ploidy level. Under
speci®c ®nite population models, numerical simulations show that values of Moran's I statistic can be
predicted from analytical theory. These simulations are also used to estimate the time taken to
approach a structure at equilibrium. Finally, we discuss the conditions under which spatial
autocorrelation statistics are little in¯uenced by variation in mutation rates, so that they could be used
to estimate gene dispersal parameters.
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Introduction

Isolation by distance, in the context of population
genetics, is the process by which geographically restrict-
ed gene ¯ow generates a genetic structure, because
random genetic drift is occurring locally. It is an
important phenomenon to consider whenever the
genetic structure or the evolutionary trends of natural
populations are to be analysed spatially. Isolation by
distance occurs in subdivided populations, when sub-
populations exchange genes at a rate dependent upon
the distance, or within a continuously distributed
population, when dispersal of gametes and/or zygotes
is spatially restricted.
The theoretical analysis of isolation by distance was

pioneered by Wright (1946) and MaleÂ cot (1948). MaleÂ -
cot analysed how kinship (also termed coancestry)
between individuals is related to the distance separating
them, and many authors have since used this approach

to describe how the genetic structure develops in di�erent
models of isolation by distance (e.g. Maruyama, 1971,
1972, 1977; Nagylaki, 1978).
Spatial autocorrelation analysis consists of a set of

statistics describing how a variable is autocorrelated
through space. Interest in these methods in population
genetics was ®rst illustrated by numerical simulations of a
population subject to isolation by distance (e.g. Sokal &
Wartenberg, 1983; Epperson, 1995). These studies sug-
gested that spatial autocorrelationmethods could be used
as inferential tools, and an increasing number of exper-
imental studies have used this approach (e.g. Epperson,
1993; Hossaert-McKey et al., 1996; Smouse & Peakall,
1999). However, except for Barbujani (1987), few at-
tempts have beenmade to establish relationships between
spatial autocorrelation statistics and descriptors of the
genetic structure used in population genetics theory.
Slatkin&Arter (1991)made several criticismsof the use

of spatial autocorrelationmethods to study the pattern of
genetic structure. One of themajor problems they pointed
out is that di�erent alleles or loci are likely to be subject to*Correspondence. E-mail: ohardy@ulb.ac.be
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di�erent evolutionary forces, in particular varying muta-
tion rates and selection pressures, causing what they
termed parametric variation. Hence, average autocorre-
lations over alleles or loci are meaningless. Given the high
stochastic variation ± the di�erence between one realiza-
tion of a stochastic process and its expectation ± generally
observed in simulations, which contributes substantially
to the variation among alleles and loci, if autocorrelation
coe�cients cannot be averaged, the power of the method
is indeed considerably reduced (Smouse & Peakall, 1999).
Another problem, not limited to spatial autocorrelation
methods, is the time needed for a structure to reach an
equilibrium state, so that it is usually not known whether
an observed genetic structure in a natural population is at
equilibrium. In this paper, we tentatively aim to bridge the
gap between spatial autocorrelation analysis and popu-
lation genetics models, and we investigate the limitations
of spatial autocorrelation analysis in the context of
relatively small continuous populations. We will assume
the absence of natural selection because our interest
focuses on using genetic markers as neutral indicators of
population structure to infer gene ¯ow parameters. We
will ®rst point out the relationship between one of the
most widely used spatial autocorrelation statistics,
Moran's I, and kinship coe�cients described in population
geneticsmodels.We then carry out numerical simulations
of an arti®cial population to (i) determine the time needed
for the genetic structure to reach its equilibrium state
under various conditions; (ii) show that the observed
genetic structure described using Moran's I statistic
agrees with theoretical models; and (iii) investigate the
e�ect of various population parameters on the spatial
genetic structure. Finally, we relate Moran's I to the
approach developed by Rousset (1997) to estimate gene
dispersal.

Descriptors of the spatial genetic structure

Kinship coef®cients

Since the work of MaleÂ cot (1948), the theory of popula-
tion genetics has made extensive use of the concept of
identity-by-descent (IBD) of homologous genes ± two
genes are identical by descent if they share a common
ancestor and no mutation has occurred ± to analyse the
genetic structure of various population models. The
genetic structure can be described in terms of a priori
kinship coe�cients, h, which represent probabilities of
IBD of pairs of genes sampled appropriately. Usually,
a priori kinship coe�cients cannot be directly inferred in
natural populations, because we cannot assess IBD but
only identity-in-state (IIS), so that only correlations for
genes are measurable. The correlation between homolo-
gous genes i and j can be de®ned as

rij � Qij ÿ Q

1ÿ Q
, �1�

where Qij� 1 if i and j are IIS, otherwise Qij� 0, and
Q �Pl p2

l with pl being the frequency of allele l in the
population (Cockerham & Weir, 1987). In this de®ni-
tion, Q coe�cients represent probabilities of IIS. Alter-
natively, rij can be de®ned in terms of probabilities of
IBD and interpreted as a `conditional' kinship coe�-
cient (Morton, 1973):

rij � hij ÿ h

1ÿ h
, �2�

where hij is the a priori kinship between genes i and j,
and h is the a priori kinship between two random genes
from the population. The two de®nitions are equivalent
in the in®nite allele mutation model (see Rousset, 1996
for other mutation models). If i and j represent pairs of
genes within an individual,

rij � F � f ÿ h

1ÿh
�3�

is the (conditional) inbreeding coe�cient, where f is the
probability of IBD of genes within individuals.

In models of isolation by distance within a contin-
uous population, the genetic structure can be described
in terms of a priori kinship between pairs of genes
according to their spatial position. Then, if h between
the genes of two individuals depends only on the
distance, d, separating them, h(d ) provides a complete
characterization of the genetic structure. Hence, rij also
depends only on the distance between i and j, and r(d )
can be inferred from the actual gene frequencies. As a
descriptor of the degree of genetic di�erentiation, the
function r(d ) in an isolation by distance model is thus
analogous to FST, the ®xation index, in an island
model.

Spatial autocorrelation methods

Spatial autocorrelation analysis is used to describe how
a variable is autocorrelated through space. Hence, it is
interesting to relate autocorrelation statistics to popu-
lation genetics parameters. We consider Moran's I, one
of the most widely used spatial autocorrelation statistics.
It is a product±moment coe�cient that expresses the
correlation of the values of a given variable, de®ned for
a set of locations, between pairs of locations situated at
given physical distances apart. It can be computed for
each distance class d as (Sokal & Oden, 1978):
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I�d� � n
Pn

i

Pn
j wij�d� � �xi ÿ x� � �xj ÿ x��Pn

i

Pn
j wij�d�

� � �Pn
i �xi ÿ x�2� , �4�

where n is the number of localities, xi and xj are the
values of the variable at localities i and j, respectively, �x
is the mean value of xi, and wij(d) are weights that equal
one if the localities i and j are separated by a distance
class d, and equal zero otherwise. Values of Moran's I
plotted against d produce a correlogram that is the
function I(d).
To describe a genetic structure, the x variable repre-

sents the frequency of a given allele (A), and this
frequency can be de®ned at di�erent levels: a subpopu-
lation, an individual or a gene. At the level of a
subpopulation, Barbujani (1987) showed that I(d ), the
correlation of allele frequencies between pairs of
subpopulations separated by a distance d, is an estimator
of the ratio r(d )/FST. At the level of a gene (allele
frequencies can take only two values: 0 or 1), by
de®nition, Moran's I statistic gives an estimator of the
correlation between genes according to the distance (d ),
hence an estimator of r(d ), the conditional kinship
coe�cient. In particular, for a pair of genes within an
individual (d� 0), I(0) is an estimator of F, the
(conditional) inbreeding coe�cient. To our knowledge,
Moran's I statistic has not been used at the level of a gene
in published studies with diploid data. But other
estimators of kinship coe�cients adapted for multiple
alleles and multiple loci have been developed
(e.g. Loiselle et al., 1995; Ritland, 1996). Most
applications of Moran's I to describe the genetic struc-
ture within a continuous population de®ne allele
frequencies at the individual level (in a diploid, allele
frequencies equal 0, 0.5 and 1 for genotypes aa, aA and
AA, respectively, where a is any allele di�erent from A).
Computed in this way, Moran's I is, by de®nition, an
average estimate per distance class of a parameter known
as Wright's coe�cient of relationship, q (Cockerham,
1969; Heywood, 1991), i.e. the correlation between
average gene frequencies of a pair of individuals. Hence,
at the individual level, properties of Moran's I statistic
and its relationship with population genetics models can
be deduced from the coe�cient of relationship. In the
following, we will consider only this application of
Moran's I statistic.

Coef®cient of relationship and kinship coef®cient

Wright's coe�cient of relationship, qij, between any
two diploid individuals, i and j, is related to the
conditional kinship coe�cient by the following equation
(Cockerham, 1969):

qij �
2rij������������

1� Fi
p �������������

1� Fj
p , �5�

where rij is the expected conditional kinship coe�cient
between a random gene of i and a random gene of j, and
Fi is the (conditional) inbreeding coe�cient of individual
i. More generally, for any ploidy level k (where k is the
number of homologous chromosomes assuming poly-
somic inheritance), and if F is assumed to be constant
for all individuals,

qij � rij
k

1� �k ÿ 1�F . �6�

Direct estimators of pairwise kinship coe�cients have
been proposed (Loiselle et al., 1995; Ritland, 1996).
Actually, it is easy to demonstrate for a diallelic locus in
diploids that the estimator of kinship of Loiselle et al.
(1995) is exactly equal to the product of Moran's I by
(1 + F )/2. There is thus no gain in using both Moran's I
and an estimator of kinship coe�cients to describe the
genetic structure. As a population genetics parameter, q
can also be de®ned in terms of a priori kinship coe�cients
(strictly speaking in the case of an in®nite allele model):

qij �
hij ÿ h

1��kÿ1�f
k ÿ h

, �7�

where f is the a priori inbreeding coe�cient.

Properties of the coef®cient of relationship

Asadescriptor of genetic structure, qhas some interesting
properties. Indeed, for a diploid population with sel®ng
allowed and assuming f is constant, Tachida &
Yoshimaru (1996) showed that

h � g � 1� f
2

, �8�

where g represents a priori kinship coe�cients for a
corresponding haploid population (with the same
migration and mutation rates). The relationship can be
extended to k-ploids (see Ronfort et al., 1998 for a
tetraploid):

h � g � 1� �k ÿ 1�f
k

: �9�

Hence, from eqns (7) and (9), the expected value of q can
be described in terms of the corresponding haploid
population:
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qij �
gij ÿ g
1ÿ g

, �10�

showing that it is independent of the sel®ng rate, the
ploidy level and the presence of double reduction in
polyploids (Tachida & Yoshimaru, 1996; Ronfort et al.,
1998). Two consequences follow: (i) the coe�cient of
relationship provides a way of comparing the genetic
structure of organisms with di�erent sel®ng rates or
ploidy levels, eliminating the speci®c e�ects of ploidy or
sel®ng on the genetic structure, contrary to the kinship
coe�cient; (ii) estimates of the coe�cient of relationship
obtained in natural populations can be compared with
expected values of haploid population models to infer
gene ¯ow parameters. As a descriptor of the genetic
structure for an isolation by distance model, q(d ) is
analogous to the parameter q de®ned in Ronfort et al.
(1998; eqn 4) for an island model.

Moran's I is not an ideal estimator of q(d ), because it
has sampling bias (Sokal & Oden, 1978) and gives an
estimate for only one allele. Sampling bias can be
reduced by adding the value 1/(n ) 1) to Moran's I,
where n is the sample size (Sokal & Oden, 1978).
Recently, however, an alternative to Moran's I consist-
ing of a multiallelic multilocus approach to spatial
autocorrelation analysis has been developed by Smouse
& Peakall (1999).

Simulation model

Moran's I statistic is used to describe the genetic
structure of a simulated population in order to analyse
the rate of approach to equilibrium and to compare the
results with the analytical model of Maruyama (1972,
1977). In the simulated model, the organism is diploid
and hermaphrodite with nonoverlapping generations.
Individuals occupy a habitat in the form of a circle or
the surface of a torus and are located in a uniform
pattern, at the nodes of a lattice or along an array
(lattice model). The genotype of each individual is
characterized at one diallelic locus. The initial genera-
tion is generated by drawing alternative alleles at
random, thus assuming that genotype frequencies follow
HardyWeinberg proportions, with initial allele frequen-
cies equal to 0.5. In subsequent generations, new zygotes
are produced by drawing an allele per locus from each of
two parents from the preceding generation. Each parent
is randomly chosen from around the position of the
progeny according to a probability law, without distin-
guishing sexes, derived from a normal distribution (in
one or two dimensions) of null average (isotropic
dispersal) and of prede®ned variance, r2. The actual
positions of the individuals being discrete, the model

chooses the one located closest to the pointing vector.
Self-fertilization occurs at a rate that depends only on
the dispersal law. At each generation and for each
individual, there is some probability, m, that the
individual is replaced by an immigrant with a genotype
de®ned by drawing at random alternative alleles with
frequencies equal to 0.5.

In Maruyama's analytical model, individuals are
assumed to occupy random locations, and their move-
ments are independent of each other. However, Felsen-
stein (1975) demonstrated that these assumptions are
actually incompatible with the assumption of a normal
distribution of dispersal distances, which would lead to
the clumping of individuals, as long as there is no
density-dependent selection or migration. In our simu-
lated lattice model, this problem does not occur, because
individuals must occupy a discrete set of positions.
Another di�erence from Maruyama's model is that the
so-called `stabilizing pressure' (Imaizumi et al., 1970),
m, is not a mutation rate but the rate of immigration of
zygotes from a constant source. The use of immigration
rather than mutation is justi®ed by the fact that
immigration is likely to occur at much higher rates,
especially if we focus on a small population or a portion
of a larger population, so that realistic values of m cover
a larger spectrum.

Values of m that will be used are 0.1, 0.01, 0.001 and
0.0001. Because Wright's neighbourhood area (NA) has
often been used to characterize isolation by distance, we
will express the level of localized dispersal in NA

equivalents rather than by the axial variance of dispersal
distances (r2). The relationships used for conversion
are: NA� 4pr2, in two dimensions; and NA� 2

���
p
p

r, in
one dimension, with r given in lattice units (Wright,
1946). Values of r used in the simulations were adjusted
to obtain NA equal to 10, 30 or 100. It should be noted
that the neighbourhood area does not provide a
complete description of local di�erentiation (Slatkin,
1985), and its interpretation as a `panmictic unit' has
little theoretical support (Rousset, 1997). Hence, it is
used only as a common way to express localized
dispersal. Three types of populations were simulated:
two toroidal populations with 20 ´ 20 and 100 ´ 100
individuals, respectively, and a circular population with
400 individuals. At given time intervals, we estimated
the coe�cients of relationship for the distance classes
0.5±1.5, 1.5±2.5, ¼, where distances are given in lattice
units, using Moran's I statistic with sampling bias
correction as given above.

Time to approach equilibrium

To study the number of generations needed for the
genetic structure to approach its equilibrium state,
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starting from a state devoid of structure, we computed
Moran's I(d ) values in simulated populations after 1, 2, 4,
8, . . ., up to 512 generations (or more, if the structure had
not yet stabilized), and we de®ned visually when the
shapes of average correlograms did not change anymore.
We also determined when Moran's I value for the ®rst
distance class, I(1), had reached at least half its equilib-
rium value. In Fig. 1, we can see for a 100 ´ 100
population with NA� 30 and m� 0.001 that average
correlograms do not change appreciably between 256 and
512 generations, so that it can be assumed that equilib-
rium has been reached after 256 generations, and half of
the equilibrium value of I(1) was reached after eight
generations. As noted by Slatkin (1993) for stepping
stone models, it clearly appears that spatial structure is
limited to short distances for the ®rst generations, and
then the correlograms progress outwards with time
(Fig. 1). The time to approach equilibrium was analysed
similarly for 36 simulation sets combining, in a factorial
way, the three types of population, the three NA values
and the four m values. To obtain reliable average I(d )
values, we performed 500 replicates per parameter set for
the population of size 20 ´ 20, 50 replicates for the
population of size 100 ´ 100, and 100 replicates for the
circular population 1 ´ 400.
We observe that the time needed to reach equilibrium

increases when the level of dispersal or the immigration
rate are smaller (Table 1). For the two-dimensional
populations, the time needed to approach equilibrium is
longer for the larger population, especially when the

immigration rate is small. For populations that bear the
same number of individuals but di�er in shape, we
observe that the one-dimensional population needs
substantially more time to approach equilibrium. If
the equilibrium state may sometimes be approached
only after a relatively long period, the time needed for
I(1) to reach at least half its equilibrium value is always
quite short (Table 1). Therefore, even if a population is
recent and initially devoid1 of structure, a restricted level
of gene dispersal should quickly lead to a detectable
genetic structure, at least in the short-distance range.
However, if the equilibrium state is needed to make
reliable inference on evolutionary processes, it appears
that only relatively small populations will reach it in a
reasonably short time, unless the rate of gene dispersal
or immigration is high.
To relate these simulation results to the theory, it

must be emphasized that the observed equilibrium state
for correlograms does not involve drift±mutation
equilibrium. Hence, what is observed is actually a
`quasi-equilibrium' state. Drift±mutation equilibrium is
actually assumed in our model because migrants come
from a source with constant allele frequencies. The
mutation rate, l, can be neglected, because we assume
l � m. In that condition, drift±mutation equilibrium is
approached on a time scale of 1/l, whereas estimators of
genetic di�erentiation of the type of FST stabilize much
more quickly, on a time scale decreasing with higher
gene ¯ow and/or lower population size (Maruyama,
1971). As shown above, spatial autocorrelation estimators

Fig. 1 Evolution across generations of

Moran's I values in a toroidal popula-
tion of size 100 ´ 100 with NA� 30 and
m� 0.001, where the initial population
was devoid of genetic structure. The

correlograms at generations 256 and 512
are nearly identical, so that we consider
that equilibrium is reached after 256

generations.
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such as Moran's I are also of the type of FST; hence, we
can expect that they need more time to stabilize with lower
m values, lower NA values and/or larger population size,
in broad agreement with our results (Table 1).

Simulation vs. Maruyama's formulae

We will now compare our estimates of the coe�cients of
relationship in our simulations, I(d ), with the expected
values that can be derived from a theoretical model
according to Maruyama and adapted for a haploid
population. Maruyama has derived formulas for the
a priori kinship coe�cients in models of populations
occupying a circular habitat of circumference2 L (Maru-
yama, 1977) or the surface of a toroidal habitat of size
L1 ´ L2 (Maruyama, 1972, 1977), with a population
e�ective density of D. To compute expected kinship, we
used the following formulae, where g(x, y) is the a priori
kinship coe�cient for homologous genes sampled from
haploid individuals separated by a distance x along the
®rst axis (L1) and a distance y along the second axis (L2):

g�x, y� � �1ÿ m�2�1ÿ g0�
DL1L2

�
X1
p�0

X1
q�0

DpDqRpq

1ÿ �1ÿ m�2Rpq
cos

2ppx
L1

cos
2pqy

L2

" #
�11�

g0 � �1ÿ m�2S
DL1L2 � �1ÿ m�2S , �12�

where S �P1p�0P1p�0 DpDpRpq

1ÿ�1ÿm�2Rpq
, with D0� 1 and Dk� 2

when k ¹ 0, and Rpq � e
ÿ2p2r2

n
p2

L2
1

� q2

L2
2

o
if gene dispersal

follows a normal distribution of variance r2.
To obtain the expected values of a priori kinship as a

function of the distance d, we set y to zero and let x� d.

Actually, for a given distance, the kinship along a
diagonal is not exactly equal to that along a vertical or a
horizontal line, but we will neglect these di�erences. For
the circular population, we let L2� 1. A priori kinship
can thus be computed by introducing the following
parameters: the population dimensions, L1 and L2; the
systematic pressure, m; the variance of gene dispersal
distances, r2; and the population density, D, which is
equal to 1.

To convert expected a priori kinship in the haploid
population, g(d ), into expected coe�cients of relation-
ship, q(d), we used relationship (10) with

g � �1ÿ m�2�1ÿ g0�
DL1L2�2mÿ m2� , �13�

as obtained by Maruyama (1972).
The expected coe�cients of relationship (i.e. expected

Moran's I values) have been computed for each of the 36
parameter sets for which the time to reach equilibrium
had been studied. We obtained a very good agreement
between expected and observed Moran's I values for all
parameter sets, and some comparisons can be seen in
Figs 2 and 3. This result con®rms the validity of our
approach to computing expected Moran's I values from
theoretical models expressed in terms of a priori kinship
coe�cients. It also con®rms that mutation, implicit in
Maruyama's model, has the same e�ect on q(d) and r(d)
as immigration from a constant source (at least to a very
good approximation). Incidentally, it shows that the
inconsistencies of Maruyama's model pointed out by
Felsenstein (1975), as mentioned above, are not impor-
tant when population density is maintained constant, at
least within the range of parameters we used.

Theoretical formulae can thus be used to predict the
in¯uence of NA and m on the shape of the correlogram.
As expected, an increase in gene dispersal (Fig. 2), or an
increase in gene immigration (Fig. 3), both result in
correlograms closer to zero values. However, variation
in NA and m values does not a�ect the shape of the

Table 1 Number of generations needed for the genetic structure to approach its quasi-equilibrium state for three di�erent
populations (20 ´ 20, 100 ´ 100, 1 ´ 400), three neighbourhood areas (NA=10, 30, 100) and four immigration rates (m)

Population dimensions

20 ´ 20 100 ´ 100 1 ´ 400

m NA=10 NA=30 NA=100 NA=10 NA=30 NA=100 NA=10 NA=30 NA=100

0.1 8 (2) 4 (1) 2 (1) 16 (1) 16 (1) 8 (1) 8 (2) 8 (2) 4 (2)
0.01 32 (4) 8 (2) 2 (1) 128 (4) 64 (4) 32 (4) 128 (8) 128 (8) 16 (4)
0.001 32 (4) 8 (2) 2 (1) 512 (8) 256 (8) 128 (4) 512 (32) 128 (16) 16 (4)
0.0001 32 (4) 8 (2) 4 (1) 512 (16) 256 (8) 128 (8) 1024 (32) 128 (16) 16 (4)

The number of generations necessary for the I(1) value to reach at least half its quasi-equilibrium value is given in parentheses.
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correlograms in the same way. In particular, high
immigration rates produce correlograms that typically
cross the axis at a relatively short distance and, for
larger distances, remain almost constant with slightly
negative values (Fig. 3). In agreement with theoretical
expectations (Wright, 1946), it is also clear that one-
dimensional populations present a higher level of spatial
structure than two-dimensional ones with identical gene
¯ow parameters (Figs 2 and 3).
In Fig. 3, we can observe an e�ect that was deduced

analytically by Maruyama (1977): in two-dimensional
populations, when m is less than » 1/4N (Nm < 1/4),
values of q(d) become nearly independent of m (which is
not the case for the a priori kinship). As this also holds

true if m is a mutation rate, variation in mutation rates
among loci can certainly be neglected in two-dimensional
continuous populations smaller than about 106 individ-
uals (or 104 for microsatellite loci), that is for most
experimental studies that have assessed genetic structure
within a population using spatial autocorrelation anal-
ysis (e.g. Loiselle et al., 1995; Hossaert-McKey et al.,
1996; Smouse & Peakall, 1999). Under these conditions,
if neutrality can be assumed, average correlograms over
loci can be computed to provide more reliable estimates,
for example using the approach of Smouse & Peakall
(1999). This is an important conclusion, because it means
that one concern of Slatkin & Arter (1991) with regard to
spatial autocorrelation methods, about variation in

Fig. 2 Coe�cients of relationship ac-
cording to distance in three populations
for m� 0.01 and various values of NA.

Solid lines correspond to the theoretical
curves according to Maruyama's for-
mulae for q(d); symbols show the esti-

mated values from the simulations using
Moran's I. (h) NA� 10; (e) NA� 30;
(n) NA� 100.
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mutation rate, l, among loci, does not apply for
relatively small continuous populations. Discrepancies
between our results and those of Slatkin & Arter (1991)
can be interpreted as a matter of scale. Slatkin & Arter
(1991) simulated a stepping stone model with relatively
high mutation rates (l� 24 ´ 10)4 to 10)3). They did not
allow for immigration from an external source, so that
mutation was the only stabilizing pressure. As the total
population size (N� 28 224) in their simulations is
higher than 1/(4l), an e�ect of the mutation rate is
indeed expected. On the contrary, our simulations
neglect mutation, assuming l � m, so that immigration
is the main stabilizing pressure and does not vary among
loci.

We suggest that the choice of relatively high values of
m (in particular m � l) is a reasonable assumption for
natural populations in at least two situations. First,
when a study focuses on a geographical scale that allows
immigration from outside to be larger than l. This is the
case, for instance, in many outcrossing plant popula-
tions in which direct estimates of pollen immigration
rate are commonly higher than 5% (Hamrick et al.,
1995). Secondly, when a substantial fraction of gene
dispersal within a population occurs at random. Indeed,
in models with m representing a rate of random
dispersal throughout the population, hereafter referred
to as m¥ (Kimura & Weiss, 1964), the correlograms are
strictly identical to models with m being a rate of

Fig. 3 Coe�cients of relationship
according to distance in three popula-
tions for NA� 30 and various values of
m. Solid lines correspond to the theo-

retical curves according to Maruyama's
formulae for q(d); symbols show the es-
timated values from the simulations us-

ing Moran's I. (s) m� 0.0001; (n)
m� 0.001; (h) m� 0.01; (e) m� 0.1.
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immigration as long as no allele has come to ®xation
(results not shown). This situation (m¥ � l) is likely to
occur within plant populations given the highly
leptokurtic pollen dispersal patterns usually observed
(Levin, 1981).

Application to estimates of gene dispersal

Rousset (1997) presented an approach to the inference
of gene ¯ow from F-statistics involving the regression of
FST/(1 ) FST) estimates for pairs of subpopulations on
geographical distance (one-dimensional model) or its
logarithm (two-dimensional model). The approach can
be extended to a continuous model and provides an
estimator of 4pDr2 (F. Rousset, 1999). According to
Rousset (1997), this approach gives good approxima-
tions under low mutation rate, l, and a limited range of
distance (e.g. d > r and d < 0:5r=

������
2l
p

in two dimen-
sions). The latter restriction may hinder the study of
genetic structure within populations of limited size when
the actual r is large. Moreover, the e�ect of m or m¥ can
be assimilated to l, so that even a moderate immigration
rate may cause problems.
As shown in the Appendix, the regression approach of

Rousset can also be applied to the coe�cients of
relationship, which gives the following approximate
results for k-ploid data:

q�d� � ÿ�1ÿ F �
1� �k ÿ 1�F �

d
2Dr2

� constant �14�

in a one-dimensional model, and

q�d� � ÿ�1ÿ F �
1� �k ÿ 1�F �

ln�d�
2pDr2

� constant �15�

in a two-dimensional model. Accordingly, Table 2
shows estimates of gene dispersal, given in NA

equivalents, for the 36 simulation sets described previ-
ously using the regression of I(d) on d, or ln(d), over all

distance classes. As expected, the estimated NA values
are closer to their actual values when m is low, and when
NA (thus r) is small relative to the population size.
An alternative to the regression approach, which is

less restrictive but more complex to apply, consists of
®tting the observed estimates of q(d) with their expec-
tations by adjusting the parameters of a theoretical
model. In the models we used, two parameters could be
adjusted: r2, the axial variance of gene dispersal
distances; and m, the stabilizing pressure, which would
be interpreted as the sum of the mutation rate, the
immigration rate and the rate of random gene dispersal
within the population. However, to demonstrate that
reliable inferences can be obtained in this way, it is still
necessary to study how robust the theoretical models are
to the many deviations from their assumptions that
occur in natural populations.
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Appendix

Assuming a low mutation rate in a stepping stone model
with k-ploids, it can be shown that the parameters

FST=�1ÿ FST� ' d=�2kDr2� � constant �A1�

in a one-dimensional model, and

FST=�1ÿ FST� ' ln�d�=�2kpDr2� � constant �A2�

in a two-dimensional model, where FST is computed for
pairs of populations separated by a distance d, D is an
e�ective population density, and r2 is the second
moment of dispersal distance (Rousset, 1997; Ronfort
et al., 1998). An equivalent parameter, a, was developed
for a continuous population (F. Rousset, 1999) and
de®ned as

a�d� � f ÿ h�d�
1ÿ f

, �A3�

where f is the a priori inbreeding coe�cient, and h(d) the
expected a priori kinship coe�cient between genes
separated by a geographical distance, d. Hence, infer-
ence of gene dispersal (Dr2) can be obtained from the
regression of estimates of a(d) on the geographical
distance (one-dimensional population) or its logarithm
(two-dimensional population). From eqn (A3), the slope
of this regression is equal to )1/(1 ) f ) times the
corresponding slope of h(d). According to eqn (7), the
regression of q(d) on geographical distance has a slope
equal to k=�1� �k ÿ 1�f ÿ kh� times that of h(d). As
�1ÿf �

1��kÿ1�fÿkh
� �1ÿF �

1��kÿ1�F , eqns (14) and (15) are deduced

from eqns (A1) and (A2).
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