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Abstract

Many empirical studies have assessed fine-scale spatial genetic structure (SGS), i.e. the
nonrandom spatial distribution of genotypes, within plant populations using genetic
markers and spatial autocorrelation techniques. These studies mostly provided qualitative
descriptions of SGS, rendering quantitative comparisons among studies difficult. The
theory of isolation by distance can predict the pattern of SGS under limited gene dispersal,
suggesting new approaches, based on the relationship between pairwise relatedness
coefficients and the spatial distance between individuals, to quantify SGS and infer gene
dispersal parameters. Here we review the theory underlying such methods and discuss
issues about their application to plant populations, such as the choice of the relatedness
statistics, the sampling scheme to adopt, the procedure to test SGS, and the interpretation
of spatial autocorrelograms. We propose to quantify SGS by an ‘

 

Sp

 

’ statistic primarily
dependent upon the rate of decrease of pairwise kinship coefficients between individuals
with the logarithm of the distance in two dimensions. Under certain conditions, this
statistic estimates the reciprocal of the neighbourhood size. Reanalysing data from, mostly,
published studies, the 

 

Sp

 

 statistic was assessed for 47 plant species. It was found to be
significantly related to the mating system (higher in selfing species) and to the life form
(higher in herbs than trees), as well as to the population density (higher under low density).
We discuss the necessity for comparing SGS with direct estimates of gene dispersal
distances, and show how the approach presented can be extended to assess (i) the level of
biparental inbreeding, and (ii) the kurtosis of the gene dispersal distribution.
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Introduction

 

Spatial genetic structure (SGS) in natural populations,
i.e. the nonrandom spatial distribution of genotypes,
can result from different processes, including selection
pressures or historical events. At a fine spatial scale, how-
ever, the most prevalent cause is probably the formation
of local pedigree structures as a result of limited gene
dispersal. In this context, genetic similarity is higher among
neighbouring than among more distant individuals, and

the theory of isolation by distance predicts the expected
pattern of SGS at drift–dispersal equilibrium.

As compared to most animal species, adults from plant
species do not move and plants’ propagules, i.e. pollen and
seeds, often show moderate to strong spatial restriction in
their dispersal. Hence, SGS is expected to occur frequently
within plant populations. Many empirical studies have
investigated fine-scale SGS within plant populations,
often using spatial autocorrelation methods (reviewed
in Heywood 1991; Epperson 1993). Most of these studies
describe patterns in a qualitative way, limiting the inferences
that could be made, and making quantitative comparisons
among studies difficult. Moreover, the patterns revealed
through spatial autocorrelation often show substantial
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stochasticity because of the process of genetic drift and the
limited information content available from genetic markers
(Slatkin & Arter 1991), especially for the earliest studies
based on allozymes. Since then, very polymorphic markers
(e.g. microsatellites) or markers providing many loci (e.g.
amplified fragment length polymorphisms) have become
available, reducing the stochasticity problem. Moreover,
new theoretical and methodological advances now per-
mit a more quantitative assessment of SGS, allowing new
inferences on isolation-by-distance processes (e.g. Rousset
1997, 2000; Hardy & Vekemans 1999; Hardy 2003).

In this paper we focus on a method based on the rela-
tionship between pairwise genetic and spatial distances in
continuous populations, more specifically in plants. The
paper has three objectives. (i) To provide concise accounts
of the theory underlying the approach, the methodological
procedure, the choice of the statistics, and the interpretation
of the results. (ii) To apply the method to 47 plant species,
from a survey of published and unpublished data, and to
relate patterns of SGS to life-history traits and ecological
conditions such as population density. (iii) To present new
methodological perspectives arising from this method that
allow new insights into plant population biology. Through-
out, we will assume that genetic markers are neutral and
the impact of selection will not be addressed.

 

Methodological approaches to assess SGS

 

Theoretical background on isolation by distance within 
continuous populations

 

Under isolation by distance (i.e. limited gene dispersal),
the probability of identity in state between two neutral
genes (

 

Q

 

) decreases with the spatial distance separating
them (

 

r

 

), and this phenomenon can be used to characterize
SGS. The analytical modelling of this process was under-
taken by Malécot (1950). At drift–dispersal–mutation
equilibrium under isotropic dispersal, the function 

 

Q

 

(

 

r

 

)
depends on the gene dispersal function, the population
effective density (

 

D

 

), the geometry of the population, and
the mutation rate (

 

µ

 

) and process.
In this paper, we focus on SGS within ‘continuous popu-

lations’, meaning areas where individuals are distributed
homogeneously (constant density). Most of the theory we
will refer to, however, is based on a ‘lattice’ model (i.e. a
regular grid with one individual per node) but its results
seem robust to the spatial clustering often displayed in
natural populations (e.g. Barton 

 

et al

 

. 2002). A convenient
analytical result for isotropic dispersal is that, for 

 

r

 

 ranging
between 

 

σ

 

 and 0.5 

 

σ

 

/(2 

 

µ

 

)

 

1/2

 

, where 

 

σ

 

2

 

 is the average
squared axial parent–offspring distance (or half this value
in a two-dimensional space), 

 

Q

 

(

 

r

 

) decreases approximately
linearly with 

 

r

 

 in a one-dimensional space, and ln(

 

r

 

) in a
two-dimensional space, at a rate proportional to 1/D

 

σ

 

2

 

(Rousset 1997, 2000; Barton 

 

et al

 

. 2002). When 

 

r

 

 < 

 

σ

 

, the shape
of 

 

Q

 

(

 

r

 

) depends on the details of the dispersal function
(e.g. leptokurtosis), and when 

 

r

 

 > 0.5 

 

σ

 

/(2 

 

µ

 

)

 

1/2

 

, it depends
on the mutation rate. Hence, when looking at an adequate
spatial scale, the product D

 

σ

 

2

 

 can potentially be inferred
from SGS whatever the exact form of the dispersal kernel
(as long as 

 

σ

 

2

 

 is finite, Rousset 2001).
However, a major requirement for successful D

 

σ

 

2

 

 infer-
ence is that SGS has reached a stationary phase represent-
ative of the drift–dispersal equilibrium state with current
demographic parameters. This requires a few generations
on a spatial scale one order of magnitude larger than 

 

σ

 

, but
tens or hundreds of generations on a scale two or three
orders of magnitude larger than 

 

σ

 

 (e.g. Hardy & Vekemans
1999). Thus, D

 

σ

 

2

 

 estimates based on SGS are more likely
to be reliable if based on a scale not larger than say 10–50
times 

 

σ

 

. At such a spatial scale, mutations can be neglected
and the model of mutation process (e.g. stepwise or not)
is not relevant, unless the mutation rate is very high (e.g.

 

µ

 

 > 10

 

−

 

3

 

; Leblois 

 

et al

 

. 2003).
The function 

 

Q

 

(

 

r

 

) depends strongly on the mutation rate
and is thus locus specific [only the shape of 

 

Q

 

(

 

r

 

) is muta-
tion independent at short distance]. On the contrary, ratios
of the form [

 

Q

 

(

 

r

 

) 

 

−

 

 

 

Q

 

R

 

]/(1 

 

−

 

 

 

Q

 

R

 

), where 

 

Q

 

R

 

 is the probability
of identity for a particular class of gene pairs (a reference),
are independent of 

 

µ

 

 under the low mutation limit, i.e.

 

µ

 

 

 

→

 

 0 (Rousset 2002). SGS is thus best characterized by
such ratios which express the mean genetic similarity
among individuals separated by a distance 

 

r

 

 relative to the
genetic similarity between genes of a reference class of gene
pairs. Two kinds of reference (

 

Q

 

R

 

) have been proposed:
genes within individuals (

 

Q

 

0

 

) and random genes from a
sample of individuals (

 

Q

 

).
In the first case, Rousset (2000) devised the parameter

 

a

 

r

 

 

 

≡

 

 [

 

Q

 

0

 

 

 

−

 

 

 

Q

 

(

 

r

 

)]/(1 

 

−

 

 

 

Q

 

0

 

). Note that the terms in the numer-
ator are reversed so that 

 

a

 

r

 

 expresses a distance rather than
a similarity measure. For diploids, assuming that male and
female gametes disperse independently, the regression
slope, 

 

b

 

a

 

, of 

 

a

 

r

 

 on 

 

r

 

 in one-dimensional space is 

 

b

 

a

 

 = (4D

 

σ

 

2

 

)

 

−

 

1

 

,
and of 

 

a

 

r

 

 on ln(

 

r

 

) in two-dimensional space is 

 

b

 

a

 

 = (4

 

π

 

D

 

σ

 

2

 

)

 

−

 

1

 

(Rousset 2000). In the second case, one can use pairwise
‘kinship’ coefficients between individuals separated by
distance 

 

r

 

, 

 

F

 

(

 

r

 

) 

 

≡

 

 [

 

Q

 

(

 

r

 

) 

 

−

 

 

 

Q

 

]/(1 

 

−

 

 

 

Q

 

). As 

 

a

 

r

 

 = [

 

F

 

I

 

 

 

−

 

 

 

F

 

(

 

r

 

)]/(1 

 

−

 

 

 

F

 

I

 

)
where 

 

F

 

I

 

 

 

≡

 

 (

 

Q

 

0

 

 

 

−

 

 

 

Q

 

]/(1 

 

−

 

 

 

Q

 

) is Wright’s inbreeding coeffi-
cient expressing the deficit of heterozygotes relative to
Hardy–Weinberg proportions, the regression slope of 

 

F

 

(

 

r

 

)
on 

 

r

 

 in one-dimensional space is 

 

bF = −(1 − FI)/4Dσ2, and of
F(r) on ln(r) in two-dimensional space is bF = −(1 − FI)/
4πDσ2. Interestingly, in two dimensions the quantity
4πDσ2 matches Wright’s ‘neighbourhood size’, Nb (Wright
1943, 1946), assuming Gaussian dispersal functions.
Although the common interpretation of Nb as the size of
a ‘panmictic unit’ is misleading and the biological signi-
ficance of Nb should not be overestimated (e.g. Rousset
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1997; Fenster et al. 2003), Nb remains a convenient synthetic
way of expressing the balance between local genetic
drift and gene dispersal within continuous populations,
predicting SGS in the range of σ to one to three orders of
magnitude σ.

The advantage of ar for characterizing SGS is that it
does not depend on a particular sample, unlike F(r) which
involves the Q term, so that the sampling scheme influences
expected F(r) values (Fig. 1). However, as shown below,
estimators of ar typically suffer higher sampling variance
than estimators of F(r). A second difficulty with ar, in
particular with plants, is that its relationship with Dσ2

given above does not hold when substantial selfing occurs
(with highly selfed individuals, the homozygosity Q0 → 1,
so that ar → ∞). This problem can be overcome with F(r)
because, even when selfing occurs, the regression slope of
F(r) on r or ln(r) is still approximately equal to −(1 − FN)/
4Dσ2 in one-dimensional space, or −(1 − FN)/4πDσ2 in
two-dimensional space, where FN represents the kinship
coefficient between neighbouring individuals (note that
FI was replaced by FN). Strictly speaking, in a lattice model,
FN should be the kinship between individuals competing
for the same location before one is selected at random
(F. Rousset, personal communication) but, in practice, the
kinship between neighbours is the best approximation
we can get for this quantity. We can likewise imagine an
alternative definition for ar solving the problem of selfing:

 ≡ [QN − Q(r)]/(1 − QN), where QN is the probability of
identity in state between the genes of neighbours. Here,
it is the genetic similarity between neighbours that is
used as reference. In the following, we will concentrate on
F(r) because  can be derived directly from F(r) values, as

 = [FN − F(r)]/(1 − FN), and  has never been used to
our knowledge in the empirical literature in plants. Never-
theless, we should note that  would be an interesting
way to compare graphically SGS among studies that differ
in their sampling scheme.

Outline of the procedures to assess SGS within
continuous populations

Studies devoted to analysing SGS within populations
of plants generally have one or several of the following
objectives: (i) to describe the pattern of SGS; (ii) to test the
pattern of SGS against that of a random spatial distribution
of genotypes; (iii) to quantify the amount of SGS; and (iv)
to infer values of biological parameters (e.g. dispersal
distances) from the pattern of SGS. These objectives are
generally achieved by computing pairwise relatedness co-
efficients between individuals in the sample and analysing
their relationship with the spatial distance separating
individuals.

Computing pairwise relatedness coefficients between 
individuals

There are several types of relatedness coefficients between
individuals, and several estimators have been proposed
for each of them. We can distinguish two types of ‘two-
genes’ (i.e. based on the probability of identity of single
pairs of genes) relatedness coefficient between two indi-
viduals i and j. First, the ‘kinship’ or ‘coancestry’ coeffici-
ent, Fij, based on the probability that a random gene from i
is identical to a random gene from j, and defined as Fij ≡
(Qij − Q)/(1 − Q). Second, the ‘relationship’ coefficients, Rij,
based on the probability that a random gene from i is
identical to one of the genes from j. The two coefficients
are closely related and provide the same information: in
the case of diploids Rij = 2Fij/(1 + FI) (Hardy & Vekemans
1999; see also Hardy 2003 for a more detailed account on
terminology and definitions).

For codominant genetic markers, estimators of Fij are
given in Loiselle et al. (1995) and Ritland (1996), and
estimators of Rij are given in Queller & Goodnight (1989),
Li et al. (1993), Hardy & Vekemans (1999), Lynch & Ritland
(1999), and Wang (2002) (see Van de Casteele et al. 2001 for
variants of the estimators of Queller & Goodnight 1989 and
Li et al. 1993). For dominant markers, Lynch & Milligan
(1994) proposed an estimator of Rij and Hardy (2003)
proposed estimators of Fij and Rij.

These estimators differ in their bias (which is generally
small) and their sampling variance (which is always huge),
and the statistical properties of some of them have been
compared (e.g. Lynch & Ritland 1999; Van de Casteele et al.
2001; Wang 2002; Hardy 2003). It must be noted that many
of these estimators (Li et al. 1993; Lynch & Milligan 1994;

Fig. 1 Impact of the sample scheme on plots of F(r) against phys-
ical distance between individuals, r. Average kinship coefficients
between pairs of individuals in a given class of distances, F(r),
were computed from samples taken on a short spatial scale (plain
line) or on a wide spatial scale (broken line), using data from
Fenster et al. (2003) in Chamaecrista fasciculata. It can be seen that the
overall rates of decrease in F(r) with distance are similar, but the
actual values of F(r) and of the x-axis intercept do differ substantially.
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′ar

′ar ′ar

′ar
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Lynch & Ritland 1999; Wang 2002) assume Hardy–
Weinberg genotypic proportions and are thus a priori
inadequate to study SGS where heterozygote deficits are
likely to occur, especially in plant species subject to selfing.
The following estimators can be used irrespective of the
mating system of the species because the logic behind their
construction makes no assumption regarding Wright’s
inbreeding coefficient: for codominant markers, statistics
defined in Loiselle et al. (1995), Ritland (1996), Queller &
Goodnight (1989), and Hardy & Vekemans (1999); for
dominant markers, statistics from Hardy (2003).

Regressing relatedness coefficients on distance

To visualize and describe SGS assuming isotropic dispersal
processes, mean Fij (or Rij) estimates over pairs of indi-
viduals in a given distance interval r, f(r), can be plotted
against distance as in a spatial autocorrelogram (note
that Moran’s I statistic is an estimator of R(r); Hardy &
Vekemans 1999). If f(r) tends to decrease linearly with r or
ln(r), the extent of SGS can be quantified by the regression
slope (bF) of fij on rij or ln(rij). However, bF depends some-
what on the sampling scheme used (see above) and is
negative, so that a better way to quantify SGS is by the ratio
–bF/(1 − f(1)), where f(1) is the mean fij between individuals
belonging to a first distance interval that should include all
pairs of neighbours (i.e. f(1) estimates FN). This ratio can be
used to compare the extent of SGS among populations or
species, and we shall refer to it as the ‘Sp’ statistic. It is better
than using for example f(1), which strongly depends on the
sampling scheme (Fig. 1; Fenster et al. 2003). Nevertheless, if
f(r) does not decrease linearly with r or ln(r), the Sp statistic
will depend on the distance range implicit in the sample.

Depending on the sampling scheme, there may be a lack
of pairs of neighbours in real data sets to properly estimate
FN. However, as FN is typically much closer to zero than
to unity and it is 1 − FN that matters, a small error in FN
estimation is negligible. Hence, using a first distance
class containing enough pairs of individuals to get a
reasonable precise f(1) value to estimate FN should be
adequate in practice, even if these pairs are not strictly
speaking neighbours.

When SGS is truly representative of an isolation-by-
distance pattern at dispersal–drift equilibrium, the dispersal
parameters can be estimated from the Sp statistic, which is
expected to be equal to 1/4Dσ2 in one-dimensional space,
or 1/4πDσ2 in two-dimensional space (i.e. 1/Nb), provided
that the regression is restricted to an appropriate distance
range (σ to 10–50 σ in two-dimensional space, see above).
As σ is unknown, an iterative approach can be applied,
assuming that the effective density, D, is known (Heuertz
et al. 2003). Therefore, a first estimate of Dσ2 is based on a
global regression (i.e. over the full distance range available),
then ; is extracted, and a new estimate of Dσ2 is based on

a restricted regression considering only pairs separated
by a distance between ; and, say, 20;. The process is
repeated until successive ; estimates stabilize (procedure
implemented in the software spagedi; Hardy and Vekemans
2002; http://http://www.ulb.ac.be/sciences/lagev). It may well
happen that the procedure does not converge, which
suggests either that the spatial scale of the sample was not
adequate (e.g. Fenster et al. 2003), that SGS is not represent-
ative of an isolation-by-distance process, and/or that the
information from the genetic markers is insufficient to get
reliable estimates.

The assumed value for D in this procedure is critical
because it is an effective density, depending on the variance
in reproductive success among individuals and through
time. As a first approximation, D is the product of the
census density and the Ne/N ratio (effective over census
population sizes), and computer simulations suggest that
this approximation is accurate at least when the density is
fairly constant in space (O. J. Hardy, unpublished results).
If an estimate of the variance in lifetime reproductive
success among individuals, V, is available, one can appro-
ximate Ne/N ≅ 4/[2(1 − FI) + (1 + FI)V )] assuming stable
population density over time (Kimura & Crow 1963). In
natural plant populations, Ne/N typically ranges between
0.5 and 0.1 (Husband & Barrett 1992; Frankham 1995) so
that, in the absence of data on V, one might set D as one-
half to one-tenth the density of adults.

Although the Sp statistic may be used both to quantify
SGS and to estimate Dσ2, the two purposes should be dis-
tinguished. The pattern of SGS is synthetically quantified
by the Sp statistic, whatever its cause [it is not ideal when
f(r) strongly departs from linearity with respect to r or
ln(r), but such departures are often difficult to assess].
However, estimating Dσ2 from Sp implicitly assumes that:
SGS results solely from isotropic limited gene dispersal,
SGS has reached a stationary phase, the sampling scale is
adequate with respect to σ, and the geometry of the popu-
lation is also adequate (one- or two-dimensional across the
σ − 20σ range). The distribution of individuals does not
need to be perfectly homogeneous (constant density), but
an aggregated distribution affects D (Barton et al. 2002).

Interpreting correlograms

The interpretation of autocorrelograms has not always
been performed properly. A common misinterpretation
is to say that SGS extends to a distance x, where x is the
distance at which f(r) (or Moran’s I ) reaches zero (or an
expected value in the absence of SGS, which is somewhat
negative for Moran’s I ). This distance is, however, not a
characteristic of the populations studied, as it depends
strongly on the sampling scheme (it is the distance at which
individuals are, on average, as similar as two random
individuals from the sample). This is well illustrated in
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Fenster et al. (2003) where analyses over samples taken at
different spatial scales within the same population were
compared, x increasing substantially when larger scales
were analysed (Fig. 1). Hence, f(r) values are arbitrary, and
only the way they change with distance is relevant. Paying
attention to the distance above which f(r) estimates are no
longer significantly positive according to a randomization
test is not a better option. Indeed, the results still depend
on the sampling scheme and, moreover, depend on the
arbitrarily set distance intervals (the testing power in-
creases with the number of pairwise comparisons falling
in the interval) and on the information content of genetic
markers. There is one instance where a critical distance can
be defined: if f(r) decreases steadily until some distance x,
showing no further trend, one may say that SGS occurs
until x. But note that to be sure that F(r) remains stable
above x, precise estimates are required (i.e. large sample
size and/or very informative genetic markers).

Quantifying SGS by the f(r) value at short distances (f(1)),
as has been suggested to estimate dispersal parameters
(e.g. Heywood 1991; Epperson & Li 1996), is also not ideal
because it is dependent on the sampling scheme and the
setting of the first distance interval. The Sp statistic, –bF /(1 −
f(1)), however, is robust to the sampling scheme, at least as
long as F(r) is approximately linear with r or ln(r). The
setting of the first distance interval can affect f(1), but as f(1)
is usually much closer to 0 than to 1 (1 − f(1)) remains robust.

Testing correlograms

A commonly used procedure consists in determining
empirically the frequency distribution of the statistics
computed under the null hypothesis of no SGS, by randomly
permuting genotypes among locations (Heywood 1991).
This is generally applied to average values per distance
intervals [e.g. f(r) or Moran’s I-values], which produces
as many tests as distance intervals, and a Bonferroni cor-
rection is sometimes applied. Applying this correction, the
overall test becomes very conservative because f(r) values
are not independent, but neglecting it, it is liberal if a single
significant deviation at a distance interval is taken as
demonstrating the occurrence of SGS. Based on these tests
it is often concluded that SGS occurs in the range where
significant deviations are detected and does not occur
elsewhere. However, the randomization procedure cannot
be used to determine the ‘scales’ of SGS. It allows one to
test only one null hypothesis: the overall absence of SGS.
Therefore, it should be applied to test a single statistic
describing SGS, such as the regression slope of fij on rij, bF
(this is strictly equivalent to a Mantel test). The power will
be maximal when a linear relationship occurs, and any
monotonic transformation (i.e. preserving the ranking) of
rij [such as ln(rij)] increasing this linearity could be applied.
The advantages of testing bF rather than a set of f(r) values

is that (i) all the information is used in a single test, (ii) the
results are independent of arbitrarily set distance intervals,
(iii) the testing power is higher, at least as long as f(r)
approaches linearity with (transformed) r (Rousset 2000;
O. J. Hardy, unpublished). In some case, strange forms of
SGS may not result in significant slopes because f(r) goes up
and down with distance, but with an amplitude exceeding
the sampling errors. A Mantel test is inefficient in such
cases; inspecting the tests applied to different distance
intervals can reveal such a pattern (see Smouse & Peakall
1999 for a global test appropriate for such situations).

Choice of the pairwise estimator of genetic relatedness

It must be noted that, when testing SGS, a low sampling
variance is required but estimator bias is unimportant. On
the contrary, bias matters as much as sampling variance
when quantifying SGS or estimating Dσ2. Table 1 shows the
relative performance of different relatedness estimators,
and an estimator of the ar parameter (Rousset 2000), to test
for SGS using real data sets of 10 populations of different
species genotyped with allozyme or microsatellite markers.
SGS was tested by assessing the significance of the re-
gression slope of pairwise statistics on ln(distance) using
10 000 randomizations of the individual spatial positions
using the software spagedi (Hardy & Vekemans 2002). In
most cases, Ritland’s estimator (equation 5 in Ritland 1996)
proved the most powerful, especially with highly poly-
morphic markers, and the statistic presented in Loiselle
et al. (1995), which shares the same statistical properties
as Hardy & Vekemans’s (1999) estimator derived from
Moran’s I statistic, was the best in a few cases where marker
polymorphism was lower (allozymes). The ar estimator of
Rousset (2000) performed poorly, detecting significant SGS
at a 5% level in only three populations, whereas Ritland’s
(1996) and Loiselle et al. (1995) estimators detected signi-
ficant SGS in eight populations. Although Ritland’s (1996)
estimator seems the best to test SGS, it tends to give down-
ward biased estimates when rare alleles occur (Ritland
1996; O. J. Hardy, unpublished results), so that it may not
be the most adequate to quantify SGS and estimate Dσ2.
For these purposes, simulations showed that the statistic
presented in Loiselle et al. (1995) performs well, even for
predominantly selfing species with high FI (Hardy 2003; O.
J. Hardy, unpublished).

Sampling strategy

To characterize SGS best, the range of spatial scales
encompassed by the sample should be maximized. This is
especially relevant for Dσ2 inference because it requires a
particular window of spatial scales, which is difficult to
assess without prior information on σ. Sampling exhaust-
ively within a confined area ensures a detailed account of



926 X .  V E K E M A N S  and O .  J .  H A R D Y

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 921–935

T
ab

le
 1

Po
w

er
 o

f d
if

fe
re

nt
 p

ai
rw

is
e 

st
at

is
ti

cs
 to

 te
st

 S
G

S 
w

he
n 

ap
pl

ie
d 

to
 v

ar
io

us
 d

at
a 

se
ts

Sp
ec

ie
s*

M
ar

ke
r†

Sa
m

pl
e

si
ze

N
o.

 o
f

lo
ci

‡
T

ot
al

 n
o.

 o
f a

lle
le

s
(r

an
ge

 p
er

 lo
cu

s)
‡

M
ea

n
H

E
‡¶

Es
ti

m
at

or
s*

* 

F L
F R

R
Q

&
G

R
L&

R
R

W
R

L
a r

D
ic

or
yn

ia
 g

ui
an

en
si

s
A

13
5

4
12

 (2
−4

)
0.

45
0.

00
48

0.
03

44
0.

38
88

0.
44

54
0.

19
45

0.
20

49
0.

17
10

C
hr

ys
op

hy
llu

m
 s

an
gu

in
ol

en
tu

m
A

54
4

13
 (2

−4
)

0.
52

0.
06

14
0.

07
52

0.
35

83
0.

07
98

0.
58

31
0.

58
09

0.
76

01

Pr
im

ul
a 

vu
lg

ar
is

A
50

7
16

 (2
−3

)
0.

24
0.

03
39

0.
00

08
0.

00
47

0.
00

40
0.

00
70

0.
01

13
0.

00
47

C
ha

m
ae

cr
is

ta
 fa

sc
ic

ul
at

a
A

88
6

18
 (2

−4
)

0.
38

0.
03

60
0.

06
29

0.
14

69
0.

18
58

0.
10

09
0.

15
88

0.
07

69

A
ra

bi
do

ps
is

 ly
ra

ta
A

59
8

22
 (2

−5
)

0.
29

0.
00

90
0.

01
31

0.
00

79
0.

01
73

0.
03

03
0.

04
1

0.
02

16

M
ed

ic
ag

o 
tr

un
ca

tu
la

 
M

13
2

5
23

 (2
−6

)
0.

35
0.

00
02

0.
00

00
0.

13
61

0.
19

12
0.

12
35

0.
11

03
0.

16
81

Er
yn

gi
um

 a
lp

in
um

M
10

0
7

40
 (2

−9
)

0.
47

0.
00

79
0.

00
00

0.
03

12
0.

00
05

0.
00

56
0.

00
85

0.
02

27

C
en

ta
ur

ea
 c

or
ym

bo
sa

M
50

9
41

 (2
−1

1)
0.

5
0.

00
92

0.
00

07
0.

16
92

0.
00

13
0.

24
58

0.
30

30
0.

47
26

Se
xt

on
ia

 r
ub

ra
M

16
3

4
48

 (9
−1

5)
0.

83
0.

00
12

0.
00

00
0.

05
12

0.
00

22
0.

11
09

0.
12

22
0.

06
84

Q
ue

rc
us

 r
ob

ur
M

10
0

6
10

4 
(1

0−
27

)
0.

87
1

0.
27

24
0.

02
86

0.
05

07
0.

06
04

0.
04

09
0.

03
47

0.
07

93

T
he

 re
gr

es
si

on
 s

lo
pe

s 
of

 th
e 

pa
ir

w
is

e 
va

lu
es

 b
et

w
ee

n 
in

di
vi

du
al

s 
on

 th
e 

lo
ga

ri
th

m
 o

f t
he

 s
pa

ti
al

 d
is

ta
nc

e 
w

er
e 

co
m

pa
re

d 
w

it
h 

th
e 

d
is

tr
ib

ut
io

n 
fo

r 1
0 

00
0 

ra
nd

om
iz

at
io

ns
 o

f t
he

 g
en

ot
yp

es
 

(c
f. 

M
an

te
l t

es
t)

. T
he

 P
-v

al
ue

s 
th

at
 th

er
e 

is
 n

o 
SG

S 
ar

e 
re

po
rt

ed
. D

ou
bl

ed
 a

nd
 s

in
gl

e 
un

de
rl

in
es

 in
di

ca
te

 th
e 

be
st

 a
nd

 s
ec

on
d 

be
st

 e
st

im
at

or
s,

 r
es

pe
ct

iv
el

y.
*S

ee
 T

ab
le

 2
 fo

r 
th

e 
re

fe
re

nc
es

 to
 e

ac
h 

sp
ec

ie
s.

†M
ar

ke
rs

: A
, a

llo
zy

m
es

; M
, m

ic
ro

sa
te

lli
te

s.
‡O

nl
y 

po
ly

m
or

ph
ic

 lo
ci

 a
re

 c
on

si
de

re
d.

§T
he

 o
ri

gi
na

l d
at

a 
se

ts
 w

er
e 

su
b-

sa
m

pl
ed

 to
 r

ed
uc

e 
th

e 
te

st
in

g 
po

w
er

 a
nd

 a
vo

id
 th

at
 P

 <
 1

0−
4  f

or
 a

ll 
es

ti
m

at
or

s.
¶

H
E
, g

en
e 

di
ve

rs
it

y.
**

Es
ti

m
at

or
s:

 F
L (

Lo
is

el
le

 et
 a

l. 
19

95
); 

F R
 (e

qu
at

io
n 

5 
in

 R
it

la
nd

 1
99

6)
; R

Q
&

G
 (Q

ue
lle

r 
&

 G
oo

dn
ig

ht
 1

98
9)

; R
L&

R
 (L

yn
ch

 &
 R

it
la

nd
 1

99
9)

; R
W

 (W
an

g 
20

02
); 

R
L (

L
i e

t a
l. 

19
93

); 
a r (

R
ou

ss
et

 2
00

0)
. 

T
he

 c
or

re
sp

on
de

nc
e 

w
it

h 
th

e 
no

m
en

cl
at

ur
e 

us
ed

 b
y 

V
an

 d
e 

C
as

te
el

e 
et

 a
l. 

(2
00

1)
 is

 th
e 

fo
llo

w
in

g:
 F

R
 =

 r
C

0/
2;

 R
Q

&
G

 =
 r

Q
rs

l,a
vi

; R
L&

R
 =

 r
R
; R

L 
= 
r S

w
av

l (
se

e 
V

an
 d

e 
C

as
te

el
 e

t a
l. 

20
01

 fo
r 

co
m

pu
ta

ti
on

al
 d

et
ai

ls
 o

f R
Q

&
G

 a
nd

 R
L)

.



S P A T I A L  G E N E T I C  S T R U C T U R E  I N  P L A N T S 927

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 921–935

very fine-scale SGS but misses larger scales. On the other
hand, sampling one individual at each node of a regular
grid over a larger scale will miss fine-scale SGS. Hence, we
do not recommend these strategies in general (but the first
one may be useful if the data are also used for parentage
analysis). Sampling along transects can be a useful altern-
ative, because small to large scales are well represented
(given enough pairs of individuals) and mapping indi-
viduals is easy. With a single transect in two dimensions,
the largest distances will correspond to pairs between the
extremities of the transect, which may result in fairly
stochastic F(r) estimates at long distances. Hence, two or
more transects disposed along, e.g. a cross, a triangle or a
square, should be better. However, it is important to verify
that the mesh of the transect is fine enough that the
consequences of very restricted dispersal events will be
detected. Stratified sampling with nearby individuals
sampled at different locations, and then organized into
subgroups, can be another alternative, though mapping
can be more difficult. This strategy can ensure a more
homogeneous coverage of a study site than transects, but
some intermediate distance intervals may contain a few
pairs of individuals. [See Epperson & Li (1996) and Leblois
et al. (2003) for other discussions on sampling strategies.]

Better assessment of SGS can be obtained by increasing
the sample size and/or scoring more markers. How should
we distribute the efforts? A good criterion is the sampling
variance of the Sp statistic, which depends essentially on
the sampling variance of bF (Vb). It can be shown that, in the
absence of SGS, Vb is proportional to the sampling variance
of fij (VF), as well as to 1/n2, where n is the sample size (O.
J. Hardy, unpublished). With the estimator of Ritland
(1996), VF is roughly inversely proportional to the total
number of alleles minus the number of loci (lets call this
difference A). Thus, when n or A is doubled, Vb is divided
by four or two, respectively, suggesting that, at equal cost,
one should put more effort into sampling individuals than
into scoring markers. However, simulations show that
under isolation by distance (i.e. significant SGS), Vb remains
proportional to 1/A but is less than proportional to 1/n2.
Thus, depending on the strength of isolation by distance,
doubling n could reduce Vb by less than a factor two (O. J.
Hardy, unpublished). Therefore, there is no general rule;
except that sampling more individuals should be much
more efficient than scoring more markers in populations
where SGS is weak (say Nb > 100).

A reanalysis of spatial autocorrelation studies in 
plants

Introduction

As stated before, many empirical studies in plants have
been devoted to characterizing SGS at the scale of single

populations, often using the approach of spatial auto-
correlation (reviewed in Heywood 1991; Ennos 2001). Two
main points emerge from these studies: (i) a statistically
significant pattern of SGS is observed in the vast majority
of studies; and (ii) the pattern of SGS is often detected only
at the shortest spatial scales investigated. These two obser-
vations have usually been interpreted as a consequence
of an isolation-by-distance process with restricted seed
dispersal within plant populations (e.g. Streiff et al. 1998;
Gehring & Delph 1999). However, the patterns of SGS
could not be directly compared among species because of
(i) a lack of a synthetic statistic independent of the spatial
scale and insensitive to the particular sampling scheme
used; and (ii) the variation among studies in the details of
the spatial autocorrelation method applied (e.g. different
relatedness statistics computed, estimates computed for
each allele or each locus separately vs. multiallelic multi-
locus estimates). The theoretical framework described in
the first part of this paper provides such comparative
tools. Firstly, it is possible to transform values of different
relatedness statistics into a common statistic, for instance
to transform values of the often used Moran’s I statistic
applied to individual allele frequencies to a kinship
coefficient corresponding to the statistic of Loiselle et al.
(1995). Secondly, the Sp statistic, –bF/(1 − f(1)), allows com-
parisons among species and can be computed based on
published data.

We compiled published and unpublished data from 47
plant species to compare their patterns of SGS and tested
whether these patterns were related to life-history traits
of the species, such as plant mating system, life form, or
pollen and seed dispersal mechanisms, as well as to
population density. The approach is analogous, although
much more limited in the number of species compared, to
the survey of allozyme variation within and among plant
populations by Hamrick & Godt (1990).

Materials and methods

We considered studies of SGS in plants using codominant
nuclear markers that provided either of the following
results: (i) values of bF and f(1), respectively, the regression
slope of fij on ln(r) and the kinship coefficient between
adjacent individuals (for species 1, 6, 8, 19, 28, 37, 46; see
references in Table 2); (ii) tabulated values of an average
genetic relatedness statistic between pairs of individuals
separated by given distance intervals, i.e. the data that are
usually plotted on spatial autocorrelograms (for species
14, 29, 32, 40); or (iii) graphical representation of spatial
autocorrelograms for individual alleles, individual loci, or
multiallelic multilocus statistics (for species 2, 3, 4, 5, 6, 7,
9, 11, 12, 13, 15, 17, 20, 21, 22, 24, 27, 31, 33, 34, 36, 38, 43, 45);
and (iv) unpublished studies for which full datasets
were kindly provided by the authors and which were
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used to compute statistics bF and f(1), using the software
spagedi (Hardy & Vekemans 2002; http://www.ulb.ac.be/
sciences/lagev) (for species 10, 16, 18, 23, 25, 26, 30, 35, 39,
41, 42, 44, 47).

For cases (ii) and (iii), when multiallelic multilocus
estimates of pairwise relatedness coefficients [i.e. f(r)]
were not available (for species 3, 5, 12, 24, 32, 33, 43), they
were calculated as averages by weighting the relatedness
coefficient of each allele k by its polymorphism index
pk(1 − pk) according to Loiselle et al. (1995), where pk is its
population allelic frequency. For case (iii), numerical
values of the average pairwise relatedness coefficients for
each spatial distance interval were deduced by digitaliza-
tion of the published spatial autocorrelograms and manual
recording of the plotted data using graphical software.
Data presented as Moran’s I statistics were transformed to
values of kinship coefficients [f(r)] using the following
formula (Hardy & Vekemans 1999): f(r) = I(r) (1 + fI)/2,
where fI is the inbreeding coefficient. For cases (ii) and
(iii), values of f(1) were taken from the average kinship
coefficient over the smallest distance interval, and bF was
computed as the slope of the linear regression of the f(r)
coefficients on ln(r). In all cases, the Sp statistic was then
computed as –bF/(1 − f(1)). In several species, SGS data
were available for several populations. We then report the
averages of FI, F(1) and the Sp statistic over populations.

For cases (i) and (iv), bF is thus computed from a regres-
sion using pairwise relatedness coefficients between each
pair of individuals, fij, whereas for cases (ii) and (iii) the
regression is performed on averages of these coefficients
over given distance intervals, f(r). To check whether the
latter procedure biases the estimation of the Sp statistic, we
applied it to 18 species for which we had the complete data
set and compared the SGS statistics computed with both
procedures. We obtained a coefficient of determination
R2 of 0.978 and the following equation: Spfull_regression =
−0.0035 + 1.045 × Spaverage_intervals; which shows that the
two procedures give essentially the same estimates.

Based on information from the published studies, we
determined categories of breeding systems, life form and
pollen and seed dispersal as follows (Table 2): (i) plant
breeding systems classified as (a) predominantly selfing (S,
average selfing rate higher than 90% and FI > 0.5), (b) mixed-
mating system (M, average selfing rate between 10% and
90%), (c) predominantly outcrossing (O, average selfing rate
lower than 10% but not described as self-incompatible), (d)
described as possessing a self-incompatibility system (SI);
(ii) life form classified as (a) herbs (H), (b) small trees or
shrubs (ST), or (c) trees (T); (iii) mode of pollen dispersal
classified as (a) animal-dispersed (AP), (b) wind-dispersed
(WP); (iv) mode of seed dispersal classified as (a) gravity-
dispersed (GS), (b) animal-dispersed (AS) (c) mixed
gravity-animal-dispersed (AGS) (d) wind-dispersed (WS).
Differences among categories in average values of the Sp41
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statistic were determined using one-way analysis of
variance anovas. Data were log-transformed to satisfy the
normality hypothesis. Because almost all herbaceous
species investigated were pollinated by insects and had
gravity-dispersed seeds, statistical analyses of the effect
of propagule dispersal were restricted to tree and small
tree species.

The effect of population density on the pattern of SGS
was tested on four species for which spatial autocorrelo-
grams were available in two populations differing for
plant density (2, 6, 9, 12) and one species with data from
five populations (17). To test the overall difference between
low- and high-density populations, we performed a t-test
for paired comparisons. For species 17, we discarded the
population with intermediate plant density and arbitrarily
separated the other populations into two pairs of low vs.
high density populations. To test whether gene dispersal is
affected by plant density, we computed inferred estimates
of the parameter σ2, half the average squared axial parent–
offspring distance, based on the pattern of SGS according
to the following formula: < σ2 > = 1/(4πSpδ), where δ is the
estimate of population density (expressed as the number of
individuals per square metre). Note that by doing so we
implicitly assume that SGS is representative of an isolation-
by-distance pattern at equilibrium, which is not demon-

strated. Moreover, δ is the census rather than the effective
density, so that the estimates are probably biased. Never-
theless, making the reasonable assumption that D/δ does
not vary substantially among populations of the same
species, the relative < σ2 > estimates remain comparable.

Results and discussion

fI, f(1) and the Sp statistic are shown for each species in
Table 2. fI ranged from −0.297–0.953, with an average of
0.141 ± 0.271 (SD) whereas f(1) ranged from 0.002 to 0.390
with an average of 0.077 ± 0.079 (SD). The Sp statistic
ranged from 0.00031 (in Virola michelii, a species for which
the pattern of SGS was not significantly different from a
random distribution of genotypes) to 0.263 (in the predom-
inantly selfing species Phaseolus lunatus), with an average
of 0.0304 ± 0.0491.

One-way analyses of variance performed using biological
characteristics as main effects showed that plant breeding
system and life form highly significantly influence patterns
of SGS (Table 3). On average, Sp was 10 times higher in
predominantly selfing than in predominantly outcrossing
or self-incompatible species, with intermediate values for
species with mixed mating systems. Similarly, Sp was about
four times higher in herbaceous as compared to tree species,

Table 3 Effect of biological characteristics of plant species on statistics of SGS and on the inbreeding coefficient
 

Effect n

Sp statistic F(1) FI FI − F(1)

Mean SD* Mean SD Mean SD Mean SD

Breeding system
Selfing (S) 5 0.1431 0.0799 0.240 0.092 0.813 0.146 0.574 0.154
Mixed mating (M) 7 0.0372 0.0367 0.098 0.064 0.162 0.215 0.064 0.184
Outcrossing (O) 18 0.0126 0.0101 0.044 0.032 0.014 0.110 −0.030 0.116
Self-incompatible (SI) 17 0.0134 0.0077 0.057 0.056 0.070 0.103 0.013 0.112

anova† P < 0.001 P < 0.01 P < 0.001 P < 0.001

Life form
Herbaceous (H) 24 0.0459 0.0643
Small trees (ST) 6 0.0259 0.0156
Trees (T) 17 0.0102 0.0096

anova P < 0.01

Pollen dispersal
Animal-dispersed (AP) 17 0.0171 0.0142
Wind-dispersed (WP) 6 0.0064 0.0038

anova n.s.‡

Seed dispersal
Gravity-dispersed (G) 6 0.0281 0.0166
Wind-dispersed (W) 5 0.0120 0.0121
Animal-dispersed (A) 8 0.0088 0.0050

anova n.s.

*SD, standard deviation.
†level of significance of a one-way anova.
‡n.s., not significant.
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with intermediate values for small trees and shrubs. In
contrast, pollen and seed dispersal modes did not signi-
ficantly influence patterns of SGS, perhaps in relation to the
lower number of species included in these tests, although
the trends indicated by Sp were in agreement with the
expectation of (i) a stronger SGS in species with animal- vs.
wind-dispersed pollen, and (ii) a stronger SGS in species
with gravity- vs. animal-dispersed seeds.

The higher SGS observed in selfing species is a logical
consequence of two phenomena. Firstly, the high level of
inbreeding (FI) substantially increases the rate of genetic
drift, reducing the effective population density by a factor
1/(1 + FI) (Pollak 1987). Secondly, in outcrossing plant
species, pollen dispersal contributes to the overall gene
dispersal (σ) whereas in highly selfing species, only seed
dispersal contributes to σ. The first effect would increase
the Sp statistic of highly selfing species by a factor of two
compared to outcrossing species. The fact that a factor
close to 10 was observed suggests that pollen dispersal
generally provides the major contribution to σ within
populations of outcrossing species. However, it is also
possible that natural selection plays an important role in
increasing SGS in selfing species as a response to environ-
mental clines, because of the wide hitchhiking effects
expected under high selfing.

Interestingly, the Sp statistic was correlated with life
form, with roughly two- to four-fold higher values for
herbaceous plants than shrubs and trees. This effect was
still present when selfing species, which are rare among
trees, were removed (data not shown). This is somewhat in
contradiction to the results of the literature survey by Ennos
(2001) who noted that the majority of woody perennial
species did show significant patterns of SGS whereas it
was the case for only five out of 11 outcrossing herbs. We
suggest that comparisons among species based upon levels
of significance of SGS taken from the literature are not
reliable however, because of the potentially very different
power of tests involving different methodologies, marker

types, and sampling schemes. Because we did not gather
original datasets for most of the studies included in our
survey, we could not apply formal tests of the isolation-
by-distance pattern.

Populations differing with respect to plant density were
compared for their pattern of SGS (Table 4). In each of the
six pairwise comparisons, the Sp statistic was consistently
and significantly (P < 0.01) higher in low density, as
compared to high density populations. Inferred estimates
of the overall standard deviation of gene dispersal were
found to be higher in low- vs. high-density populations,
for five of the six pairwise comparisons. However, the
difference was only marginally significant (P = 0.07 for a
two-tailed test). These results show that density is a major
determinant of the SGS as it affects the strength of local
genetic drift. Indeed, the Sp statistic is expected to be
inversely proportional to the density under isolation by
distance (Heywood 1991). However, the results also suggest
that gene dispersal distances were higher in low density
populations, partially compensating for the direct effect of
density. This is consistent with direct measures of pollen
dispersal showing that pollinator flight distances increase
when population density decreases (e.g. Fenster 1991;
Schmitt 1983).

Perspectives

Confronting direct and indirect estimates of gene dispersal

A variety of approaches have been developed to assess
gene dispersal in natural populations, from the most
‘direct’ ones, where dispersal events are followed (in situ
monitoring of propagule movements) or reconstructed
(paternity/parentage analyses), providing ‘real-time’ esti-
mates, to the most ‘indirect’ ones based on equilibrium SGS,
which provide ‘historical’ estimates. The ‘Two-Gener’
approach to assess pollen dispersal (Austerlitz & Smouse
2001, 2002; Smouse et al. 2001) is somewhat intermediate,

Table 4 Effect of plant density on the Sp statistic and on inferred standard deviation of gene dispersal in five species
 

Species
Low density
population Density* Sp <σ>†

High density
population Density* Sp <σ>†

2 Cryptotaenia canadensis LD 0.10 0.3107 1.60 HD 6.00 0.0388 0.58
6 Medicago trunculata aude 3 0.71 0.0627 1.33 aude 1 1.32 0.0462 1.14
9 Sanicula odorata LD 0.10 0.0548 3.81 HD 6.00 0.0181 0.86

12 Hibiscus moscheutos site 8 0.95 0.0430 1.40 site 2 2.20 0.0083 2.09
17 Silene acaulis Krummholz 0.09 0.0395 4.73 slope 2 2.52 0.0144 1.48
17 Silene acaulis Flat 1 0.14 0.0230 4.98 Summit 2.93 0.0032 2.92
t-test for paired comparisons P < 0.01 P = 0.07

*density in plants expressed as number of individuals per square meter.
†inferred estimate of the standard deviation of the overall distribution of gene dispersal.
†P-values of a two-tailed t-test for paired comparisons between low vs high density populations.
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although it is ‘indirect’ because it is based on the pattern
of genetic structure among pollen pools, it nevertheless
provides ‘real-time’ estimates. These methods not only differ
in the actual vs. historical nature of their estimates, but also
in their precision and reliability with respect to a priori
assumptions (e.g. the Sp-statistic-based approach assumes
that SGS is representative of an isolation-by-distance
pattern at equilibrium). Although ‘direct’ approaches such
as parentage analyses are potentially more reliable and
precise, they require exhaustive sampling of adults as well
as highly polymorphic and reliable markers, so that they
cannot be applied at a reasonable cost in all situations.
Hence, it is important to compare ‘direct’ and ‘indirect’
estimates: (i) to validate indirect approaches, which are
generally much easier to apply in plant populations, and
(ii) to assess if the extent of gene dispersal remains stable
across generations. Few such comparisons using the
approach presented here are nowadays available, but we
can cite the study on the annual legume Chamaecrista
fasciculata where direct (from measures of seed and pollen
movement) and indirect (from the pattern of SGS) Nb
estimates matched very closely (Fenster et al. 2003).

Assessment of biparental inbreeding

Biparental inbreeding is the contribution of mating events
among relatives to the overall level of inbreeding within a
population, as opposed to the contribution of selfing
events. It can be quantified by the average relatedness
between mates (excluding selfing). Waller & Knight (1989)
expressed it as the ‘genotypic correlation’ (i.e. the ‘relation-
ship’ coefficient) between truly outcrossed mates. It is
more illuminating to express it as the average kinship
coefficient between truly outcrossed mates, Fx, because
Fx is also the expected inbreeding coefficient of the off-
spring of these mates (provided that the coefficients are
relative to the same reference level of relatedness). Hence,
Fx estimates can be compared to values of the statistic
describing overall inbreeding, i.e. Wright’s inbreeding co-
efficient, FI. If FI = Fx, mating among relatives is suffi-
cient to explain the observed level of inbreeding. If FI >
Fx, selfing must occur. If FI < Fx, inbreeding depression
might be occurring.

When biparental inbreeding is the result of limited
pollen dispersal within a population showing SGS, Fx can
be estimated by integrating the product P(r) × f(r) over
distance r, where P(r) is the frequency distribution of
pollen dispersal distances (excluding selfing). P(r) can be
obtained by direct monitoring of pollen dispersal events,
for example through a paternity analysis. It can be shown
that the relationship between the inbreeding coefficient
and the selfing rate, s, is s = 2(FI − Fx)/(1 + FI − 2Fx) (Fenster
et al. 2003), reducing to Wright’s (1951) formula, s = 2FI/
(1 + FI), in the absence of biparental inbreeding. Hence, an

assessment of Fx can help to distinguish the relative roles
of selfing and mating among relatives to the overall level of
inbreeding, an alternative to procedures based on progeny
analyses (Ritland 2002). Even in the absence of information
on P(r), one may just assume that pollen is restricted to
very short distances, so that a maximum estimate for Fx
would be F(1), the kinship coefficient between adjacent
individuals. If FI is higher than this estimate, selfing is
suggested. If it is lower, mating among relatives might
exclusively explain the pattern of inbreeding. In strictly
outcrossing species, one expects FI = Fx, and a significant
deviation might indicate that selective processes (e.g.
inbreeding depression) occur (FI < Fx) or that the estimated
FI is biased upwards, for example because of the occur-
rence of null alleles. In practice the comparison is not easy
because precise estimates of FI and Fx are often difficult to
obtain (i.e. to a precision of 10−2).

From our survey of empirical studies in plants, we
observe in Table 3 that fI >> f(1) in species with selfing or
a mixed mating system, whereas the two estimates are
similar in outcrossing species, as expected. One would also
expect that fI ≤ f(1) in species with a self-incompatibility
system, because they avoid selfing, but we observed that
fI was on average slightly larger than f(1). This probably
results from the low precision of FI estimates and potential
bias because of null alleles.

Inferring seed vs. pollen dispersal with nuclear markers

The regression approach to estimating dispersal para-
meters based on the F(r) function exploits the information
within a restricted distance range, neglecting what happens
when r < σ. It was shown in Heuertz et al. (2003) that the
form of F(r) at short distances could be related to the
relative contributions to the overall level of gene dispersal,
σ, of seed dispersal, σs, vs. pollen dispersal, σp. More
specifically, assuming Gaussian dispersal kernels, when
σs << σp, F(r) at r < σ goes above the regression line
(concave shape), whereas when σs ≥ σp, F(r) at r < σ
goes below the regression line (convex shape). Reliable
inference of the σp/σs ratio, however, requires precise F(r)
estimates, which necessitate a strong SGS and/or large
sample size and/or many markers. For instance, precision
was low when trying to infer σp/σs in common ash using
about 150 individuals and six very polymorphic micro-
satellite loci because the SGS was weak (Sp = 0.002,
Heuertz et al. 2003). Another problem is that the shapes of
the pollen and seed dispersal kernels also affect the shape
of F(r) at short distances. More generally, if F(r) goes above
the regression line at short distances, the gene dispersal
kernel must be very leptokurtic (fat tail), which necessarily
occurs if σs << σp, but is also the case if the seed and/or
pollen dispersal kernels are very leptokurtic, independ-
ently of σp/σs.
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Using the F(r) graphs collected for the 47 species pre-
sented above, we tried to infer whether there was an
overall trend regarding the shape of F(r) estimates at short
distance. Using the average F(r) estimates per distance
interval, we fitted the data to a polynomial function of
third power: f (r) = a + b ln(r) + c [ln(r)]2 + d [ln(r)]3, looking
for the a, b, c and d parameters that minimize the difference
between f (r) and the F(r) estimates. The choice of the third-
power polynomial was justified by simulation results
showing that it fits F(r) well under isolation by distance
for a wide range of conditions (Heuertz et al. 2003). The
curvature of f (r) is given by its second derivative, so that
the initial curvature was estimated as k = 2c + 6d ln(r1),
where r1 represents the middle of the first distance interval.
Of the 47 data sets analysed, 32 (68%) gave k > 0, indicating
concavity, and 15 gave k < 0, indicating convexity. Hence,
there is an overall trend suggesting that gene dispersal
is highly leptokurtic, possibly because σs << σp in many
plant species.

Conclusion

This paper presents a first attempt to compare the within-
population SGS among plant species in a quantitative way,
based on robust theoretical models. We found clear effects
of breeding system and life form on SGS, which mirror the
well-established effects of these traits on plant population
genetic structure (Hamrick & Godt 1990; Charlesworth &
Pannell 2001). Population density was also found to affect
the level of SGS. Pollen and seed dispersal, however, were
not found to influence patterns of SGS significantly, but the
number of species was very limited for these comparisons
(N = 23). The Sp statistic used for these comparisons is
expected to be equal to the inverse of the neighbourhood
size, 1/Nb, under isolation by distance in two-dimensional
space. We did not interpret our results in terms of Nb
estimates because we could not check for each reviewed
species whether the conditions required for Nb estimation
(spatial scale, population geometry, stationary SGS)
were fulfilled. Nevertheless, the fact that the results were
consistent with a priori expectations based on knowledge
of population density as well as dispersal processes sug-
gests that the SGS observed in most species resulted from
isolation by distance.
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