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Chapter 1

Introduction

Ever since their invention in 1960 [1], lasers have been exciting the curiosity of physicists
by their strange dynamics: in spite of a constant excitation, they delivered a spiking out-
put [2]. At that time also, oscillatory chemical reactions were observed [3], contradicting the
firmly established belief that chemical reactions should always end up in steady state. These
misbehaviors with respect to the general rule of equilibrium called for explanations and stim-
ulated rapid developments in the theory of dynamical systems [4]. While the unstable laser
output was still largely attributed to device imperfections and parasitic noise only, some phys-
icists soon suggested that it might result from a fundamental nonlinearity in its equations of
motion. In particular, various kinds of multimode operations were put forward as possible
causes for the undamped laser pulsations (for a detailed historical account, see [5]). Grasnyuk
and Oraevskii, after a numerical study of the equations governing a monomode laser with
zero detuning from the atomic resonance, reported on the observation of irregular behavior
[6]. Because of the important discrepancy between computed and experimentally observed
thresholds for the onset of pulsations, this result went almost unnoticed in the physics com-
munity. Much more sensational was Lorenz notice of aperiodic motion in a weather model.
His paper [7] marked the beginning of an intense research activity on what is now called
“deterministic chaos” [8]. A decade later, Haken showed [9] that the laser equations studied
by Grasnyuk and Oraevskii were actually isomorphic to the Lorenz model. However, these
equations were considered by many as too simple to describe lasers. Moreover, the range of
parameter values corresponding to chaotic dynamics seemed unrealistic. Some ten more years
later, a NH3 laser was built that finally behaved in good qualitative and quantitative agree-
ment with the Lorenz-Haken equations [10]. This, together with other experimental and
theoretical achievements [5], definitely established the relevance of a dynamical approach to
the functioning of lasers. Understanding the laser instabilities and finding ways to control
them is now becoming a routine problem for the applied physicists. Several monographs
appeared during the last decade which underlined several of these aspects [11].

In this vein, the present thesis is an investigation of some nonlinear phenomena that occur
in laser systems. Aside from the fundamental interest of the matter, such a study might help
designing better optical sources for the engineer and the experimentalist. By “laser systems”,
we mean both cavities and open systems where stimulated emission of radiation is used to
amplify light.

While they are often regarded as a nuisance, dynamical instabilities sometimes give rise
to useful applications. For instance, repetitive trains of powerful light pulses are of practical
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2 CHAPTER 1. INTRODUCTION

interest in high-precision optical ranging or efficient nonlinear conversion. Promising optical
sources of such pulses are the microchip lasers with saturable absorbers (LSA). They spon-
taneously generate pulsed output via a mode of operation called Passive Q-switching. Recent
experimental studies of these microchip systems reveal unusual parameters values, which mo-
tivates us to reexplore the LSA theory in the first Chapter of this thesis. In these lasers, the
onset of pulsations does not follow the usual scenario: instead of emerging directly at the
first lasing threshold, pulsating intensity oscillations arise for larger pumping strengths after a
Hopf bifurcation from the steady lasing state. It is known, however, that a Hopf bifurcation
generally gives rise to harmonic oscillations. The fact that a pulsating output develops over a
very narrow range of pump parameter is an indication that the Hopf bifurcation is singular.
Examples of this dynamical behavior is documented in chemistry and biology [12], but has
never been found in the laser context. Similarly to Haken with the Lorenz equations, we
will note in the course of this study that the LSA problem is connected to the Lotka-Volterra
model, used to describe chemical oscillations [13] as well as predator-prey ecology [14]. These
equations received considerable attention as a general model of nonlinear oscillations [15].

The knowledge gained with the LSA will prove to be very useful in our second Chapter.
We wish to determine how a smooth spatial variation of the pump profile along the cavity
axis can influence the dynamics of a multimode laser. Previous studies, based on the recently
derived TSD+ model [16], have indicated that this may induce self-pulsations in two-mode
lasers. Encouraged by this result, we will analyze the three-mode case, which is more realistic
if the spectral gain curve is symmetric. We will find that the underlying mechanism of this
self-pulsing is very similar to that of the LSA: the spatially inhomogeneous excitation leaves
some regions of the cavity unpumped, hence absorbent. This, together with the multimode
operation, turns out to be the clue for the onset of pulsation. Moreover, we will discover
memory effects associated to these spatial pump variations. Finally, we will examine a state
of synchronization between modal intensities that is typical of these lasers and known as
antiphase dynamics.

The issue of synchronization will reappear when we consider in Chapter III the dynamics
of semiconductor laser (SCL) arrays with a global coupling. In these devices, it is required to
lock the field phases emitted by each SCL in order to improve the beam and spectral qual-
ities of the total output. We will deal with this question by regarding the lasing elements
as oscillators, thus recasting the problem in a wider context: many other systems, such as
arrays of Josephson junctions, reaction-diffusion systems, neural networks in the brain and
even rhythmic applause in concert halls are also covered by the concept of coupled oscillat-
ors. Recently, much attention has also been paid to the synchronization of chaotic systems,
with application to encryption. In the case of a global coupling, many theoretical results
are already available, through the generic Kuramoto model [17]. Beside the theoretical diffi-
culties associated to the numerous degrees of freedom, the SCL problem contains additional
complications: the global coupling being achieved by an optical feedback, it is affected by
a non negligible time delay. The influence of such a time delay on the synchronization of
coupled oscillators is currently a subject of intense research, which makes SCL arrays even
more relevant to investigate. Furthermore, the optical feedback is known to destabilize the
continuous output of SCL’s by inducing undamped relaxation oscillations. We will have
therefore to examine the synchronization not only with respect to the optical oscillations of
the electric field, but also with respect to the relaxation oscillations.

In the end of the 1980’s, two papers [18] broke new grounds in the theory of light-matter
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interaction. They showed independently and almost simultaneously that a population inver-
sion was not necessary to achieve light amplification by stimulated emission of radiation.
This dramatic conclusion rested on the consideration of more general quantum systems than
the usual two-level scheme in the semi-classical approximation. In these system, the atoms
can be prepared in special quantum superpositions of states where light absorption is sup-
pressed. Such a quantum preparation amounts to create a quantum coherence between these
states. Many new effects were found as a result of this quantum coherence, among which the
spectacular Electromagnetically Induced Transparency [19]. Recently, experimental results
indicated that quantum coherence effects were at play in the microchip LiNdP4O12 crys-
tal (LNP in short) laser. This laser emitted a time periodic intensity when it was multimode.
Experimental investigations further showed that these undamped relaxations oscillations were
directly connected to simultaneous operation on multiple atomic transitions. The periodic
behavior was not immediately detected because the associated relaxation oscillations were
almost purely antiphased, so that the sum of the modal intensities remained practically con-
stant. E. Viktorov directly recognized the L scheme behind this multi-transition operation.
Together with P. Mandel proposed a model of the experiments carried out on the LNP laser.
The theory, valid for two transitions, also included TSD+ features, thereby taking account
of the fact that the cavity was end-pumped. Its success leads us to resume and reformulate
the problem for an arbitrary number of transitions in Chapter IV. Our primary concern is to
assess the actual role played by atomic coherence in this laser. Therefore, we will disregard
the variations of the pump profile along the cavity axis. Indeed, from our previous study on
the TSD+ model, we know that end-pumping can not be the cause of intensity oscillations.
By carefully analyzing the multimode field phases inside the cavity, we will demonstrate that
quantum coherence results in an enhancement of the stimulated absorption in the crystal.
This effect is nonlinear, as it is generated by the electromagnetic field itself. Moreover, we
will show that these nonlinear losses are sufficient to destabilize the steady state output of the
LNP laser. In addition, we will demonstrate the antiphase character of the oscillations, in
agreement with the experimental observation.

In the frame of the Interuniversity attraction pole program, we were involved in a joint
research with the Instituut voor Kern- en Stralingsfysica (IKS). Our aim was to apply the
principles of amplification without population inversion to nuclear transition. It is indeed
technically impossible to achieve such an inversion in the nuclear domain, which has pre-
vented the construction of a gamma ray laser so far. With the ideas of [18] in mind, the
IKS team had already proposed to couple a radio-frequency electromagnetic field with the
Hyperfine levels of a nuclear ground state [20]. However, it was later realized that, due to
the equal population of all Hyperfine levels for a sample at room temperature, the necessary
quantum coherence could not be achieved, so that the extension of the principles of atomic
amplification without inversion to nuclear transitions remained problematic. In response
to this problem, Rustem Shakhmuratov, while in visit in the IKS, proposed an alternative
elecro-nuclear scheme, in which the RF field was replaced by a laser beam. In Chapter V,
we will study this system and will find ranges of parameters that do allow the inversionless
amplification of a weak gamma field. This positive result will however be moderated by the
observation that part of the optical field energy is dissipated in the amplification process.
Consequently, considering the propagation of a bichromatic optical-gamma field, there must
be a limit distance beyond which the optical field is not sufficiently intense anymore to induce
quantum coherence. This distance is a crucial piece of information to set up an experiment,
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since it marks the transition from amplification to absorption of the gamma-field. We will
therefore devote the second part of this research to its determination.

The diversity of subjects treated in the present work reflects the vitality of research in laser
dynamics. Rather than focusing on a single question, we chose to participate in the multiple
projects carried out in the ONT group. We were thus continuously in close contact with
some of the most relevant topics in the field. This gave us the possibility to touch many
facets of the nonlinear interaction of light with matter but also explains the generality of the
title of this thesis.

A common and important feature to the studied physical systems is dissipation. Dissip-
ative processes determine the timescales of the dynamics and play therefore a decisive role
in it. It will often appears that some variables relax faster than others, which suggests the
use of asymptotic techniques. Throughout this work, we will emphasize the analytical ap-
proach, completing it by numerical analysis. Whenever possible, we will try and interpret
our mathematical results in physical terms, in order to extend our comprehension beyond
the particular details of the models we use.
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Chapter 2

Lasers with a weakly saturable absorber

2.1 Introduction

Microchip lasers with saturable absorbers (LSA) are promising tools for applications in which
short and intense light pulses on monomode emission are needed and small size is required.
They spontaneously generate pulsed output via a mode of operation called Passive Q-switch-
ing (PQS). Contrarily to other devices for which the cavity quality factor Q is suddenly
changed, these devices do not require switching electronics. Their complexity is therefore
much reduced compared to other microchip systems such as coupled-cavity Q-switched mi-
crochip lasers [1]. As noted in [2], their production is simplified by the fact that no interfer-
ometric control of the cavity dimension is necessary. This also relaxes the tolerance on the
temperature stability during their use. They are therefore potentially inexpensive and robust
lasers. With a pulse width below 100 ps and a peak power exceeding 5 kW [3], they are in-
teresting for applications in medicine, light detection and ranging, and nonlinear frequency
conversion [4]. The experimental study of these microchip systems revive the theoretical
interest of LSA because they are characterized by unusual values of the relative saturability
Α between the absorber and the amplifier. This parameter is typically larger than one for
gas [5, 6] and semiconductor lasers [7] with saturable losses while Α is smaller than one for
microchip lasers. As a result, qualitatively different responses may appear for these lasers.
We should mention that the authors in [8] already considered this situation when studying
PQS in a CO2 laser with saturable losses. Motivated by the recent experiments on micro-
chip lasers, the present chapter can therefore be viewed as an analytic continuation of [8].
From a mathematical viewpoint, our problem is a singular Hopf bifurcation, by which nearly
harmonic periodic oscillations emerge in the intensity output but rapidly become pulsat-
ing. Such singular bifurcation problem have been studied in the past to describe pulsating
chemical or biological oscillations [9]. We apply the method developed in [9] to analyze the
microchip LSA. On this occasion, we find that that the problem is connected to the Lotka-
Volterra equations used in the previous century to model chemical oscillations [10] as well
as predator-prey ecology [11]. These equations received considerable attention as a general
model of nonlinear oscillations [12].

This chapter is organized as follows. In section 2.2, we review the process of PQS caused
by nonlinear losses. In addition, we present the model equations and summarize their linear
stability analysis as performed in [13]. In section 2.3, we determine the size of the “bifurc-
ation layer”, i.e. the small range of pump values over which pulsating oscillations develop.

7
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With the help of the Lotka-Volterra equations, the analytic description of the bifurcation
layer is performed in section 2.4. In the next section, we use a composite asymptotic expan-
sion to describe and characterize the intensity pulse over the bifurcation layer. Finally, we
conclude in Sec. 2.6.

2.2 Pulse generation by saturable losses

The resonant interaction of an electromagnetic field with a two-level system can lead either
to absorption or amplification of light, depending on the incoherent excitation. In both
cases, however, saturation effects arise for large intensities. This results from the fact that the
same Einstein coefficient characterizes stimulated absorption and emission. As the number
of photons becomes very large, these stimulated processes dominate the incoherent excitation
and spontaneous emission. Consequently, the number of atoms in the ground and excited
states tend to equalize and the medium becomes nearly transparent [14]. In a laser with
saturable absorber, two separated cells are placed in the laser cavity. One of them is “active”
or amplifying. It consists of two-level atoms with a positive population inversion, achieved by
means of an external pump. The second cell is left with a negative inversion and is therefore
absorbent, or “passive”. The coexistence of amplification and absorption makes the laser
highly unstable and capable of avalanche effect. To be more specific, let us suppose that the
laser is pumped above the lasing threshold. From a vanishing value, the intensity starts to
grow with time. Eventually, one of the two cells becomes saturated. If it is the absorber that
is bleached first, the overall cavity losses diminish. Consequently, as the intensity increases,
it becomes more efficiently amplified. The growth of the intensity thus accelerates in an
explosive manner until the amplifier becomes saturated in its turn. Finally, the linear cavity
losses overcome the gain and the intensity falls to zero. This sustained generation of intensity
pulses is called Passive Q-Switching. At first sight, PQS seems to require that the passive cell
saturate for a smaller intensity than the active one. This condition is actually not necessary if
the absorber has a faster dynamic than the amplifier because what actually matters is that the
former saturates before the latter in the course of time.

In the simplest model of a LSA, passive and active media interact only with one cavity
mode. Furthermore, the radiation is tuned in perfect resonance with the transition of both
systems. Implicitly, we thus assume that the amplifying and absorbing atomic transitions have
the same frequency and that they are homogeneously broadened. Three variables describe
such a system. First, I is the laser intensity. It is rescaled in such a way that it starts to
significantly saturates the amplifying cell when it is equal to one. The second variable is the
gain. It is proportional to the average population difference on the amplifying transition
and is noted D. Similarly, we define D̄ as the normalized averaged population difference
on the absorbing transition. This leads to the following three rate equations, proposed by
Yamada [7]:



2.2. PULSE GENERATION BY SATURABLE LOSSES 9

dI
dt
= I I-1 + D - D̄M , (2.1)

dD
dt

= Γ [A - D (1 + I)] , (2.2)

dD̄
dt

= Γ̄ AĀ - D̄ (1 + ΑI)E . (2.3)

In these equations, A and Ā are the pump parameters of the amplifying and absorbing media,
respectively, and the parameter Α represents their relative saturability. Time is measured in
units of the cavity photon lifetime G-1

c . In Eq. (2.2), Γ º Γü/Gc is the normalized decay rate
of D towards equilibrium. Similarly, the relaxation rate Γ̄ü of the saturable losses D̄ is rescaled
as Γ̄ º Γ̄ü/Gc. The parameters Γ and Γ̄ are typically very small, Γ, Γ̄ � 1 [15]. An exhaustive
study of the Yamada model was presented in [16] for the case Γ = Γ̄. Of particular interest
is the parameter Α because its value controls the mechanism by which pulses are produced.
In general, Α > 1 for gas and semiconductor lasers. This is the most documented case in the
literature. However, recent experiments with microchip lasers correspond to Α < 1 [3, 13].
We assume in the present analysis that Α, Γ, and A are independent parameters, although a
more precise modelization of the system [13] indicates that this is only an approximation.

The lasing threshold, above which the non lasing solution is unstable, is given by

A = Ath º Ā + 1. (2.4)

Above this threshold, laser action takes place and the population variables in the active and
passive media are related to the intensity by

D =
A

1 + I
, D̄ =

Ā
1 + ΑI

, (2.5)

which shows directly the saturation of the gain and absorption with respect to the intensity.
Moreover, since D = D̄+1 in steady state, the pump parameter A is connected to the intensity
by the relation

A = (1 + I) K1 + Ā
1 + ΑI

O . (2.6)

Close to threshold, we have

I >
A - Ath

Ath - ΑĀ
. (2.7)

In most LSA’s, Α is so large that the numerator of this last expression is negative. Therefore,
the bifurcation from the zero intensity to the constant lasing solution is subcritical. A typical
bifurcation scenario for large values of Α is shown in Fig. 2.1: as soon as A surpasses the lasing
threshold Ath, a strongly pulsating intensity output is produced. The period of this pulsating
solution tends to infinity as A - Ath ® 0+. In the language of dynamical system theory, this
indicates that the bifurcation leading to such regime is a homoclinic bifurcation [16, 17]. For
larger values of the pump parameter A, the constant intensity solution recovers stability and
pulsation disappear.

A different situation is encountered if

Α <
Ath

Ā
. (2.8)



10 CHAPTER 2. LASERS WITH A WEAKLY SATURABLE ABSORBER

Figure 2.1: Bifurcation diagram computed with Eqs. (2.1) to (2.3) with Ā = 4, Α = 5, Γ = 0.01,

Γ̄ = 0.1. The lasing threshold is located at Ath = 5. For this value of Α, the lasing solution emerges

subcritically from the off solution. Dotted and dashed lines correspond to unstable segments of the

steady state solution. Full circles indicate maxima of the intensity pulses that are produced immedi-

ately after the lasing threshold. AH indicates a large intensity Hopf bifurcation by which the steady

state solution becomes stable.

In this case, the constant lasing solution emerges supercritically from the zero intensity solu-
tion at A = Ath. Very close to this threshold, however, it can be destabilized by a Hopf bifurc-
ation. Furthermore, over an extremely small range of pump parameter values, the resulting
intensity oscillations change from harmonic to strongly pulsating, as illustrated in Fig. 2.2.
The decription of this rapid transition will be our main objective.

A linear stability analysis of the steady state solution (2.7) was performed in [13]. In the
limit Γ, Γ̄ � 1, Γ = O (Γ̄), there is a Hopf bifurcation close to the lasing threshold. It occurs
at a small intensity I = IH given by:

IH >
ΓΓ̄ (Γ + Γ̄)

ΑΓ̄2Ā - Γ2Ath
. (2.9)

Using Eq. (2.6), the corresponding value of the pump parameter A = AH is:

AH > Ath + IAth - ΑĀM IH . (2.10)

The value of IH in (2.9) is physically relevant only if Α > Γ2Ath/ IΓ̄2ĀM. Combining this
constraint with expression (2.8), the PQS regime we study corresponds to the values of Α
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Figure 2.2: Bifurcation diagram with the same parameter values as in Fig. 2.1, except Α = 0.5. The

zero intensity solution is first destabilized by a supercritical steady state bifurcation at Ath = 5. At

AH = 5.017, the steady state lasing solution is destabilized by a Hopf bifurcation. The branch of

periodic solution becomes nearly vertical at AC > 5.02, in good agreement with formula (2.22). For

larger values of A, the amplitude of the pulsating solution grows rapidly and pass by a maximum at

A > 14. The pulsations further disappear through a Hopf bifurcation at AH2 > 30.

satifying

Γ2Ath

Γ̄2Ā
< Α <

Ath

Ā
.

This implies that Γ < Γ̄. Such situation is encountered experimentally with microchip lasers
having Nd:YAG as the gain medium and Cr:YAG as the saturable absorber [2, 4, 13]. Es-
timated parameter values are

Γ = 1.7 10-6, Γ̄ = 6.3 10-5, Α = 8.5 10-2, A, Ā = O (1) . (2.11)

Experiments were also done on a Nd:YVO4 microchip laser with semiconductor saturable
absorber mirror (SESAM)[3]. For this system, the following parameters are evaluated as:

Γ = 3.7 10-7, Γ̄ = 9.3 10-2, Α = 3.7 10-3, A, Ā = O (1) . (2.12)

Finally, let us mention for future reference that if the active and passive media consist of the
same atoms, PQS is impossible. Indeed, in this case, the rescaled relaxation rate Γ and Γ̄ are
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identical and the relative saturability Α equals one. Equations (2.1) to (2.3) then reduce to

dI
dt
= I (-1 +D) , (2.13)

dD
dt

= Γ [A -D (1 + I)] , (2.14)

where D = D - D̄ and A = A - Ā. This shows that the system is then equivalent to an
inefficiently pumped laser without saturable absorber. It is known that such a system does
not deliver a pulsed intensity when it is free running [15]. We will see in the next Chapter,
however, that this property is not always verified if the laser is multimode.

2.3 Size of the bifurcation layer

As we have seen in the previous section, the transition from harmonic to pulsating oscillations
occurs on a very limited range of the pump parameter A. Let us now determine the value
of AC of the pump parameter until which the oscillations are still harmonic. The size of the
bifurcation layer will be defined as AC - AH . To this end, we first examine numerically the
pulsating solution close to the Hopf bifurcation point (See Fig. 2.3). In the (D, I) plane of
the phase space, we note that the trajectory of the pulse spends a long time near the unstable
separatrix that emerges from the saddle point (Ath, 0). This suggests that the PQS pulsating
oscillations result from a collision between the limit cycle emerging from the center I Ā

1+IH
, IHM

and this separatrix. Let us determine the value of A for which this happens. The coordinate
of the Hopf point (2.9) and (2.10), together with the steady state expressions (2.5) motivates
the new variables s, i, d, and d̄ defined by

s º Γt, I (t) º Γi (s) , D (t) º Ath + Γd (s) , D̄ (t) º Ā - Γd̄ (s) . (2.15)

Moreover, we introduce the parameters a and ¶ as

A º Ath + Γa, ¶ º
Γ

Γ̄
. (2.16)

Inserting (2.15) and (2.16) into Eqs. (2.1) to (2.3) leads to the following equations for i, d,
and d̄ :

i¢ = i Id + d̄M ,
d¢ = a - d - Athi,
¶d̄¢ = -d̄ + ΑĀi. +O (Γ)

(2.17)

In these equations, primes denote derivatives with respect to the rescaled time s and the O (Γ)
corrections apply to the last two equations. The Hopf bifurcation for this reduced system is
located at

aH =
(1 + ¶) IAth - ΑĀM
ΑĀ - ¶2Ath

. (2.18)

This expression is equivalent to the location of the bifurcation point (2.10) in the original
set of equations. Equations (2.17) cannot be solved analytically. Following our observation
regarding the phase-space trajectory of the pulse, we seek a value of rescaled pump para-
meter a for which the trajectory degenerates into the unstable separatrix of the saddle point
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Figure 2.3: a) temporal trace of the pulsating solution for A = 6, Ā = 4, Α = 0.5, Γ = 0.01, and

Γ̄ = 0.1. b) phase portrait for the same parameters. The trajectory of the solution orbits around

the steady state lasing solution at (D, I) = (4.37, 0.37) and comes close to the stable and unstable

manifolds of the off state (D, I) = (6, 0). These two points are represented by squares in the inset. For

small values of I, we see in the inset that the trajectory is almost linear when the system moves away

from the saddle point (6, 0).
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Id, d̄, iM = (a, 0, 0). On this separatrix, we make the hypothesis that d and d̄ vary linearly

with i. To verify this hypothesis, we write the variables d and d̄ as functions of i and compute
their derivatives with respect to i. In the limit Γ ® 0, we find:

d (d)
di
=

a - d - Athi

i Id + d̄M ,
d Id̄M

di
=
-d̄ + ΑĀi

¶i Id + d̄M . (2.19)

We then seek a solution of the form

d = a + Βi, d̄ = ∆i, (2.20)

where Β and ∆ are unknown coefficients to be determined. Substituting (2.20) into (2.19)
gives the following conditions:

Β = -∆ =
-Ath

1 + a
(2.21)

and

a = aC =
Ath - ΑĀ

ΑĀ - ¶Ath
, (2.22)

which defines aC. In Figure 2.2, we see that aC provides a good estimate for the onset of
pulsations. The size of the bifurcation layer over which the solution becomes pulsating is
given by aC - aH . Using (2.22) and (2.18), we find

aC - aH =
¶ IAth - ΑĀM2IΑĀ - ¶AthM IΑĀ - ¶2AthM . (2.23)

We note from 2.23 that the bifurcation layer becomes large as Α decreases. As Α approaches
the critical value Α¥ given by

Α¥ =
¶Ath

Ā
, (2.24)

aC tends to infinity. The value Α¥ is thus a lower bound below which the absorbing cell of the
LSA does not saturate enough to produce a pulsating output, although harmonic oscillations
remain possible. Indeed, we recall that it is this saturation that causes the avalanche effect.
From a mathematical viewpoint, however, our analysis is based on the assumption that a is
of order unity. Therefore, if Α is close to Α¥, it looses its validity as a tends to aC.

On the other hand, the size of the bifurcation layer decreases like ¶ for small ¶, so that
the Hopf bifurcation branch becomes more and more vertical. This clearly applies to the
microchip Nd:YVO4 laser with SESAM as indicated by (2.12) and, to a lesser extend, to the
Nd:YAG/Cr:Yag LSA (2.11).

2.4 From harmonic to strongly pulsating oscillations

Having determined the size of the bifurcation layer aC-aH , we wish to describe the amplitude
of the intensity oscillations for values of the rescaled pump parameter a between aH and
aC and see how actually harmonic oscillations become pulsating. For the microchip LSA’s
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described by the sets of parameters (2.11) and (2.12), the ratio ¶ = Γ/ Γ̄ is small compared to
unity. To take advantage of this fact, we rewrite the last equation of (2.17) as

d̄ = ΑĀi - ¶d̄¢ Þ d̄¢ = ΑĀi¢ - ¶d̄¢¢,

d̄ > ΑĀi - ¶ΑĀi¢ (2.25)

The reduced model (2.17) in the vicinity of the Hopf bifurcation then becomes

i¢ = i Id + ΑĀiM - ¶ΑĀii¢, (2.26)

d¢ = a - d - Athi + O (Γ) , (2.27)

We note from (2.11) and (2.12) that Γ � ¶. We may therefore neglect the O (Γ) terms in the
last equation. The Hopf bifurcation for this reduced system coincides with the limit ¶ ® 0
in (2.18). It is located at

i0 =
1
ΑĀ

, d0 = -1, a0 =
Ath

ΑĀ
- 1. (2.28)

Introducing the new bifurcation parameter a1 as

a = a0 (1 + ¶a1) , (2.29)

the steady state is simply given by

I iS dS M = I i0 d0 M ´ (1 + ¶a1)

It is then convenient to introduce the new variables v and w as

v =
i
iS
- 1, (2.30)

w = d - dS + v. (2.31)

The variable v directly measures the amplitude of intensity oscillations around the steady
state. In terms of these new variables, Eqs. (2.26) and (2.27) become:

v¢ = (1 + v)w + ¶ (1 + v) (a1v - v¢) ,
w¢ = -v (a0 - w) + ¶ [(1 + v) (a1v - v¢) - (a0 + 1) v] .

(2.32)

At the dominant order in ¶, we show in the Appendix 2.A that these equations are equivalent
to the Lotka-Volterra conservative system of equations [10, 11]. They admit a one-parameter
family of periodic solutions, shown in Fig. 2.5. The related oscillations are nearly harmonic
with frequency

0
a0 close to the center (v, w) = (0, 0) and become pulsating as the max-

imum intensity (the maximum of v) increases. This reduced system seems therefore able to
reproduce the bifurcation layer in Fig. 2.2. The fact that it is conservative in dominant order
contrasts with the three-variable system (2.17) encountered in the previous section. Setting
¶ = 0 in first approximation, the periodic solutions (v0, w0) of the system verifies the first
integral:

E = v0 - ln (1 + v0) - w0 - a0 ln K1 - w0

a0
O . (2.33)
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In this expression, E is a constant that characterizes the amplitude of oscillations. In Ap-
pendix 2.B, we derive a solvability condition that relates implicitly the value of E to the
bifurcation parameter a1. It writes

a1 =
à

P
(1 + v0)

2 w2
0

a0 - w0
ds

à
P

a0v2
0

a0 - w0
ds

, (2.34)

where the integrals are evaluated over one period and are functions of E as the value of E
determines the solution (v0, w0). By evaluating the two integrals in (2.34), we may then find
the corresponding value a1 (E). This is done in Fig. 2.4, where we compare our analytical
approximation with the bifurcation diagram of the system (2.1) to (2.3) and find an excellent
agreement.

Figure 2.4: Enlargement of the bifurcation diagram 2.2 near the low-intensity Hopf point. The dotted

line represent the analytical approximation, obtained with (2.34). The start of the analytical curve is

shifted by 0.0005 on the right for a better fit with the numerical branch, which is in full line. The

analytical curve agrees very well with the numerical curve, considering that ¶ is as large as 0.1 for this

diagram.

Two limit cases can be studied analytically. On the one hand, we may examine Eq. (2.34)
for small amplitude oscillations, i.e., we assume E � 1. For periodic solutions near the
center (v0, w0) = (0, 0), we have

I v0, w0 M = Ρ0
a0
I sin

0
a0s,

0
a0 cos

0
a0s M , (2.35)

where Ρ � 1. Substituting this solution in (2.34), we obtain:

Ρ = 2a0

2
a1 - 1
2 + a0

(2.36)
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The amplitude of oscillation grows therefore parabolically with a1 in the vicinity of the bi-
furcation point as we expect from Hopf bifurcation theory. Setting Ρ = 0, we obtain the first
correction in ¶ to the Hopf bifurcation point:

a1,H = 1. (2.37)

The second limit allowing an analytical evaluation of (2.34) is possible is the limit E � 1.
We show in Appendix 2.B that

lim
E®¥

a1 (E) º a1,C = a0 + 1. (2.38)

Combining relations (2.29), (2.37), and (2.38), we recover the size of the boundary layer
predicted in (2.23) for ¶� 1:

a0 I¶a1,C - ¶a1,HM = ¶a2
0 = ¶ KAth

ΑĀ
- 1O2 . (2.39)

2.5 Shape of the intensity pulse

This first integral (2.33) determines a family of periodic solutions. If E � 1, these solutions
are of small amplitude and describe ellipses in the phase space. On the other hand, if E � 1,
they are of large amplitude and correspond to the apparition of pulses in the system. We will
now describe these pulses by composite asymptotic expansions [18, 19]. In the limit E � 1,
the trajectory of the system in the phase plane can be described separately in 4 segments (See
Fig. 2.5):

1. In the first segment, the LSA intensity is nearly zero. The corresponding portion of the
phase space trajectory is therefore near the separatrix defined by v = -1. In this region,
the pulse is approximately described (see Appendix 2.C) by v > v1 (s - s1) with

v1 (s) = -1 + exp [a0 (s + e-s - 1) - E] . (2.40)

2. In a second phase, the trajectory approaches the second separatrix defined by w = a0.
We then find that v > v2 (s - s2) with

v2 (s) = -1 + ea0s. (2.41)

3. After this exponential growth, the intensity passes by a maximum v� 1. In this limit,
we obtain v > v3 (s - s3) with

v3 (s) =
a0 + E

1 + e(E+a0)s
+ ln K a0 + E

a0 + a0e-(E+a0)s
O . (2.42)

4. At its final stage, the pulse decreases violently and reaches a region of the phase plane
where |w| � 1. This allows to derive for the intensity the approximate form v >
v4 (s - s4) with

v4 (s) =
E - eEs

1 + eEs
. (2.43)
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Figure 2.5: Phase portrait of the periodic solution of (2.32) with ¶ º 0. Ā = 4 and Α = 0.5, which

yields a0 = 1.5. From the smallest to the largest cycle, the values of the first integral E are 0.1, 1,

and 10. The four regions in the phase space corresponding to the approximate solution v1 to v4 are

indicated by the number 1 to 4 along the largest orbit. The direction of rotation is indicated by the

arrow.

Knowing the form of the solution in different temporal intervals, we may construct the
entire pulse as

v (s) =

ìïïïï
íïïïï
î

v1 (s) , s < s12,
v2 (s - s2) , s12 < s < s23,
v3 (s - s3) , s23 < s < s34,
v4 (s - s4) , s34 < s.

(2.44)

The time constants s12, s2, s23,¼ are determined by the requirement that the solutions on
subsequent intervals coincide in the vicinity of the connection points. Since we only have
approximate solutions at our disposal, we require only that the functions and their derivatives
be identical in the limit E � 1. The result of this analytical approximation is compared in
Fig. 2.6 to the numerical integration of Eqs. (2.32) with ¶ = 0, showing a good qualitative
and quantitative agreement. In Appendix 2.C, we find that the interpulse time scales linearly
with the pulse maximum value. This duration is given by s12 and equals

s12 =
E + a0

a0
. (2.45)
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Figure 2.6: Temporal trace of a pulse obtained from (2.32) with ¶ º 0. Full line, numerical integration

with max (v) = 25; dotted line, analytic approximation (2.44) with E = 25.

We note on the other hand that the pulse is strongly asymmetric. The rising edge of the pulse
is much slower than its falling edge. Therefore, we may use s23 - s12 as an estimation of the
pulse duration. From (2.68), we find that

s23 - s12 = a-1
0 ln IE + a0 - a0e-1/a0M . (2.46)

Surprisingly, the pulse asymmetry is different from the shape calculated in [20]. Contrarily to
what is shown in Fig. 2.6, these authors found that the descending part of the pulse is longer
than the ascending part. Their results holds for large intensities, whereas the expressions
presented in this section are only valid very close to the bifurcation threshold, as indicated
by the scaling relations (2.15). To assess how the transition occurs between the two shapes,
we compare two numerical integration of the original equation (2.1) to (2.3) performed at
different distances of the Hopf point (see Fig. 2.7. We thus observe that on the quasi-vertical
part of the periodic Hopf branch (A = Ath + Γa, with a > aC), the shape obtained from
the reduced system (2.32) describes reasonably well the LSA output. However, beyond this
vertical portion of the bifurcation diagram, the asymmetry is reversed and is fitted by the
formula in [20]. This suggests that in between the two situations, there exists a range of
pump values for which the pulse is almost symmetric, which might be interesting in solitonic
applications.

2.6 Conclusion

Motivated by recent experiments on microchip lasers with saturable losses, we have revisited
the LSA theory. The parameter values that are relevant to these experiments differ from
the usual situation where the absorber has a lower saturation intensity than the amplifier.
Rather than emerging from a homoclinic bifurcation at the laser first threshold, pulsations
arise in this system through a singular Hopf bifurcation. We studied this bifurcation in the
vicinity of the laser threshold A = Ath and found a reduced three-variable problem that is
not conservative. This an important difference with respect to the previously studied singular
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Figure 2.7: Shape of the pulse close and far from the Hopf instability, obtained by numerical integra-

tion of Eqs. (2.1) to (2.3) with Ā = 4, Α = 0.5, Γ = 0.01, Γ̄ = 0.1. The Hopf point is at AH = 5.017.

a) A = 5.0204836. The shape of the pulse is still correctly described by the Lotka-Volterra system,

despite the fact that I = O (1) and the scaling relation (2.15) is no more satisfied. The rising edge is

slower than the falling edge of the pulse. b) A = 6. The asymmetry of the pulse is now reversed and

agrees with [20].
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Hopf bifurcations [9]. In terms of the cavity damping rate Gc and the relaxation rates Γü and
Γ̄ü of the amplifier and absorber, respectively, we found that the bifurcation layer has a size

AC - AH =
Γ

2ü
Γ̄üGc

IAth - ΑĀM2
JΑĀ - ΓüΓ̄üAthN JΑĀ - Γ

2ü
Γ̄

2üAthN .
In microchip lasers, Gc is typically one order of magnitude larger than in conventional lasers
due to the comparatively small cavity round-trip type. In addition the saturable absorber
decays usually much faster to equilibrium than the amplifier, so that AC-AH � 1 in general.
Therefore, the transition from harmonic to pulsating oscillations will be difficult to observe
experimentally. However, the size of the bifurcation layer can be made larger if ΑĀ - ΓüΓ̄üAth is

diminished. This can be achieved either with a small value of Α, or by decreasing Ā through
the doping concentration of absorbing atoms and the size of the passive cell.

From the fact that in most situations Γü � Γ̄ü, we may simplify the analysis further
and obtain a conservative problem in the leading order of the small parameters Γü/Gc and
Γü/ Γ̄ü. This allows to use the technique developed in [9] and draw the full branch of periodic
solution over the bifurcation layer.

Beyond the Hopf bifurcation layer, other asymptotic techniques can be used [13, 17] to
determine the amplitude of the pulse as a function of the pump parameter A. By studying
the pulse shape in the bifurcation layer, we realize that it has a different shape than for large
A. Therefore, by designing a microchip laser with a large transition AC - AH , one can in
principle control the shape of the pulse by the pump parameter. We may further conjecture
that some value of A leads to a symmetric pulse shape. It would be interesting to verify this
point either analytically or numerically in the future.
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Appendix to Chapter 2

2.A The Lotka-Volterra equations

Lotka proposed as an hypothetical mechanism of reaction between two chemical products of
concentrations X and Y the two kinetic equations [10]

X ¢ = X (c1 - c2Y ) , Y ¢ = Y (-c3 + c4X ) . (2.47)

Later, Volterra used de same equations [11] to describe the evolution of two populations
having a predator-prey relation. The prey population X , has a natural growth rate c1 and a
death rate proportional to the number of predators: -c2Y . On the other hand, the predator
population has a death rate -c3 in the absence of prey and grows otherwise with the rate c4X .
At the dominant order in ¶, Eqs. (2.32) are

v¢0 = (1 + v0)w0, (2.48)

w
¢

0 = - (a0 - w0) v0. (2.49)

These equations are identical to (2.47) with c1 º a0 and c2,3,4 º 1 upon the transformation

X = 1 + v0, Y = a0 - w0.

2.B Derivation of the solvability condition

In the leading order in ¶, the system (2.32) reduces to Eqs. (2.48) and (2.49). At this order,
a one-parameter family of periodic solutions (v0 (s;E) , w0 (s;E)) exists. They verify the first
integral (2.33). However, only one of these periodic solutions is also a periodic solution of
the full system (2.32). To determine it, we introduce the functional

Ẽ (v (s) , w (s)) = v - ln (1 + v) - w - a0 ln K1 - w
a0
O . (2.50)

This functional, computed with the true periodic solution of (2.32) should verify in first
approximation the condition

à
P

Ẽ ¢ds = 0, (2.51)

where P is the period of the solution. Using (2.32), we can rewrite this condition as

à
P
;v Ia1v - v¢M + w

a0 - w
A(1 + v) Ia1v - v¢M - (a0 + 1) vE? ds = 0. (2.52)

23
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We now evaluate this expression with v0 (s;E) and w0 (s;E). To this end, we note that

à
P

v0v¢0ds =
1
2
Av2

0 (s)EP0 = 0. (2.53)

Moreover, using (2.48), we find that

à
P

v0w0

a0 - w0
ds = à

P

-w0w¢0
(a0 - w0)

2 ds = C- ln (a0 - w0 (s)) -
a0

a0 - w0 (s)
GP

0
= 0. (2.54)

In the same way, we demonstrate that ÙP v
n
0w0/ (a0 - w0) ds = 0. Finally, (2.52) reduces to

à
P
Ca1v2

0 -
w2

0 (1 + v0)
2

a0 - w0
G ds = 0, (2.55)

which is the solvability condition (2.34).
Let us now derive the critical value of a1 that corresponds to an infinite value of E. In

this limit, the orbit of the periodic solution (v0 (s;E) , w0 (s;E)) spends most of the time in
the vicinity of the separatrix w = a0. The first integral (2.33) can then be approximated by

E > v0 - ln (1 + v0) - a0 - a0 ln K1 - w0

a0
O ,

® w0 > a0 - a0 KeE+a0-v0

1 + v0
O1/a0

.

In addition, the integration of one period is replaced by an integration over the time spent
near the separatrix w = a0:

à
P

f (s) ds > à v max

v min

f (v)
w (1 + v)

dv > à ¥

-1

f (v)
a0 (1 + v)

dv.

Equation (2.52) eventually becomes

a1 =
à ¥

-1
a0 (1 + v)1+1/a0 e-v/a0dv

à ¥

-1
(1 + v)-1+1/a0 v2e-v/a0 dv

,

=
a0 à ¥

0
Ξ-1+1/a0e-ΞdΞ

à ¥

0
Ia2

0Ξ
1+1/a0 - 2a0Ξ

1/a0 + Ξ-1+1/a0M e-ΞdΞ .

Integration by parts of the numerator then yields a1 = 1 (2.38).

2.C Asymptotic matching for the pulse

In this section, we derive the approximations (2.40), (2.41), (2.42), and (2.43) for the pulse
and determine the time constants s12, s2, s3,¼ in (2.44).
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In the first region, v > -1. Substituting this approximation in Eq. (2.49) yields w =
w1 (s - s1), with

w1 (s) = a0 (1 - e-s) . (2.56)

The expression (2.40) for v1 is deduced from the first integral (2.33), where we neglect v1 as
compared to - ln (1 + v1).

The second region corresponds to the initiation of the pulse. The trajectory approaches
the second separatrix, so that w2 > a0. Substituting this approximation in (2.49) directly
yields (2.41).

In the third region, the intensity passes by a maximum. We have therefore v3 � 1 in
(2.33) and can neglect ln (1 + v3) by comparison. This gives

v3 > E + w3 + a0 ln K1 - w3

a0
O . (2.57)

Equation (2.48) is then transformed into

w¢3 > - (a0 - w3) CE + w3 + a0 ln K1 - w3

a0
OG

> - (a0 - w3) (E + w3) , (2.58)

where the logarithmic term is omitted in the right hand side for the sake of integrability and
because it is zero when v3 is maximum. The solution of this equation is w = w3 (s - s3), with

w3 (s) =
a0 - Ee(E+a0)s

1 + e(E+a0)s
. (2.59)

Using (2.57), we deduce v3 in (2.42).
Finally, at the end of the pulse, we have |w4| , v4 � 1 so that the first integral can be

reevaluated as w4 > v4 - E. Substituting this into (2.47) we obtain an integrable equation
for the intensity variable

v¢4 > (1 + v4) (v4 - E) , (2.60)

which yields (2.43).

2.C.1 Matching first and second segments

In the vicinity of s12, we have, with x12 º s - s12

v1 (s) = -1 + exp [a0 (s12 - 1 + e-s12) - E]

´ [1 + a0 (1 - e-s12) x12] + O Ix2
12M , (2.61)

v2 (s) = -1 + ea0(s12-s2) (1 + a0x12) + O Ix2
12M . (2.62)

The matching of the two functions requires

exp [a0 (s12 - 1 + e-s12) - E] > ea0(s12-s2), (2.63)

a0 (1 - e-s12) > a0. (2.64)

In the limit E � 1, these conditions are satisfied if we take

s2 =
E + a0

a0
, s12 = s2. (2.65)
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2.C.2 Matching second and third segments

Introducing x23 º s- s23 and the auxiliary functions y2 º ea0(s23-s2) and y3 º e(a0+E)(s23-s3) we
obtain the matching conditions

y2 - 1 =
a0 + E
1 + y3

+ a0 ln
(a0 + E) y3

a0 (1 + y3)
, (2.66)

a0y2 =
(a0 - Ey3) (a0 + E)

(1 + y3)
2 . (2.67)

In the limit E � 1, we have the approximate solutions

y2 =
a0 + E
1 + y3

,

y3 =
a0e-1/a0

E + a0 - a0e-1/a0

from which we deduce that

s23 - s2 = a-1
0 ln IE + a0 - a0e-1/a0M ,

s3 - s23 = (a0 + E)-1 ln
E + a0 - a0e-1/a0

a0e-1/a0
. (2.68)

2.C.3 Matching third and last segment

To connect the last part, we use x34 º s - s34, ȳ3 º e(a0+E)(s34-s3), and ȳ4 º eE(s34-s4). We
obtain the matching conditions

E - ȳ4

1 + ȳ4
=

a0 + E
1 + ȳ3

+ a0 ln
(a0 + E) ȳ3

a0 (1 + ȳ3)
, (2.69)

-E (1 + E) ȳ4

(1 + ȳ4)
2 =

(a0 + E) (a0 - Eȳ3)

(1 + ȳ3)
2 . (2.70)

We solve these two equations numerically in order to obtain Figure 2.44.
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Chapter 3

Solid state lasers with spatially
distributed gain

3.1 Introduction

Despite the fact that they share the same physical mechanisms to generate coherent light,
ring cavity and Fabry-Perot cavity lasers have radically different behaviors. Their difference
resides in the structure of the cavity electromagnetic modes that support the laser radiation.
In a ring cavity, they are plane waves. If it is perfectly symmetric, there is no preferential
direction of propagation and both directions should generally be taken into account. This
provides the simplest example of a multimode laser [1]. In most situations, however, if the
linewidth broadening is homogeneous, ring lasers are monomode. They lend themselves to a
relatively simple mathematical description because the intensity distribution is uniform inside
the cavity for all eigenmodes. With this respect, it was shown that their evolution equations
are equivalent to the Lorenz equations, a model that has become generic in the study of
chaos [2]. Consequently, they exhibit a very rich phenomenology of complex behavior and,
for this reason, have received much attention from theoretical physicists.

On the other hand, the eigenmodes of Fabry-Perot lasers are stationary waves. These
lasers operate more easily in multimode configuration, even when homogeneously broadened.
Moreover, they are intrinsically stable. By contrast with the ring cavity, the problem of an ad-
equate description of a multimode Fabry-Perot laser in the rate equation limit is difficult. By
rate equations, we mean equations that couple the electromagnetic fields and the population
inversion only. The first successful model was proposed by Tang, Statz, and deMars [3] who
showed that the dominant feature driving these lasers was the coupling between the modal
intensities and the average population inversion via the population inversion grating, also
known as spatial hole burning. The characteristic length of these population gratings is half
the optical wavelength. Soon afterwards, a number of theoretical models generalizing the
Tang, Statz, and deMars (TSD) equations were proposed to account for additional mechan-
isms: the coupling among the complex field modal amplitudes (phase-sensitive interactions),
the coupling between the complex field modal amplitudes and the population grating at
either optical or/and long wavelengths, and the longitudinal inhomogeneity of the pumping
mechanism [4, 5, 6, 7, 8, 9, 10]. The TSD+ model [11] is a recent extension of the TSD
model that includes (i)the coupling of the modal intensities to the low spatial frequencies
of the inversion of population profile and (ii)the pump profile in the longitudinal direction.

29
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Transverse effects are ignored in this approach. This chapter is devoted to a systematic study
of the TSD+ model.

In Sec. 3.2, we briefly review the derivation of the TSD+ model and define the notations.
In Sec. 3.3, we prove that a fundamental theorem of antiphase dynamics, which was demon-
strated for the TSD equations, is preserved by the TSD+ extension. This theorem deals with
the properties of the total intensity, which in the rate equation approximation is the sum of
the modal intensities. It states that in the limit of a flat spectral gain curve, the deviation
of the steady state total intensity is a global variable verifying a single linear harmonic oscil-
lator equation with a frequency WR that is mode-independent. These relaxation oscillations
generate a peak in the power spectrum of the total intensity when the laser is subjected to
an external perturbation (noise, weak modulation, transient relaxation, for instance). This
is in contrast with the modal intensities which display a larger number of peaks, typically as
many peaks (and therefore relaxation oscillation frequencies) as there are modes, and possibly
harmonics of these frequencies.

Concerning the dynamics of a laser operating on an arbitrary number of modes, little can
be said from analytical point of view, besides antiphase dynamics. In order to gain insight
into the model, we will therefore restrict our attention on a fixed number of modes. The
two-mode case was already treated in [12]. It is not always realistic however, if one considers
atoms with a gain curve that is symmetric in the spectral domain, such as neodymium (Nd).
Indeed, in this case, the laser cavity is typically tuned in such a way that one mode coincides
with the atomic resonance. Then, as the pump parameter is increased, the number of lasing
mode varies typically as 1 ® 3 ® 5 ® ¼. Therefore, in Sec. 3.4, we analyze systematically a
symmetric three-mode configuration with one central mode of maximum gain Lmax and two
side modes with equal gains smaller or equal to Lmax. We give the expressions of the steady
state solutions and determine their stability. In particular, we analyze the Hopf bifurcations
which may destabilize multimode solutions only. Given the difficulty to determine the exist-
ence and stability character of these bifurcations in the usual way (i.e., linear stability analysis
of the steady state), we adopt an alternative approach which is suggested by the numerical
simulations of the TSD+ equations. Indeed, they are prone to display pulsed solutions, as
in a passive Q-switching process. On this basis, we assume the existence of pulsed solutions
and determine analytically the conditions of existence of an inter-pulse solution, in which the
modal intensities are vanishingly small. It turns out that this problem can be solved analytic-
ally, even for an arbitrary number of modes, and the conditions of existence are identical with
the Hopf bifurcation conditions whenever a straightforward linear analysis has been possible.

The results presented in this chapter were published in [13].

3.2 Derivation of the TSD+ model

We consider a Fabry-Perot cavity of length L that supports N modes of oscillation for the
electric field:

E (z, t) =
Nâ

p=1

IEp (t) e
iΩpt + c.c.M sin IkpzM , (3.1)

Given the speed of light c¢ inside the cavity, the wave numbers kp satisfy the relation kp =
Ωp/ c¢ = npΠ/L. In addition, the cavity is filled with atoms that possess a resonant transition
with the laser field (see Fig. 3.1). With respect to this atomic resonance Ω21, the field modes
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Figure 3.1: The two-level system.

are characterized by the detunings Dp = Ωp - Ω21. We treat the atoms by a two-level de-
scription in which Γü and Γ^ are the relaxation constants for the population inversion and
the atomic polarization, respectively. The lasers considered in this model are characterized
by the fact that Γ^ � Γü. Examples of laser mediums to which this inequality applies are
Nd:YAG, LiNdP4O12, and semiconductors. For such lasers, the polarization can be elimin-
ated adiabatically. In the rotating wave and slowly varying amplitude approximations [1], the
Maxwell-Bloch equations for this system become, with tü = Γüt,

dIp (tü)
dtü = Κ K-1 +Lp

1
L à

L

0
2D (z, tü) sin2 IkpzM dzO Ip (tü) , (3.2)

¶D (z, tü)
¶tü = w (z) - D (z, tü)

æçççç
è
1 +â

p

2Ip (tü) sin2 IkpzMö÷÷÷÷
ø

. (3.3)

In these equations, Ip is the intensity of mode p, rescaled as Ip = 2Lp
ÄÄÄÄd12Ep

ÄÄÄÄ2 / I � 2ΓüΓ^M,
where Lp º I1 + D2

p/Γ2
^M-1

and d12 is the matrix element of the dipole operator between the
two states of the transition. The quantity D (z, tü), is the rescaled distribution of population
inversion along the cavity axis. It is given by D (z, tü) = NΩ21

ÄÄÄd12
ÄÄÄ2 (Ρ22 - Ρ11) / (¶

�
ΓüGc),

where N is the density of atoms, Ρ is their density operator, and Gc is the cavity damping
rate. The effect of incoherent pumping is contained into w (z), towards which D (z, tü) tends
in the absence of a laser field. Finally, the cavity damping rate is expressed in the timescale
tü = Γüt as Κ = Gc/Γü.

Equations (3.2) and (3.3) are nonlinear and integro-differential, which leaves little hope
to obtain analytical result on the laser dynamics. Nevertheless, a Lyapunov function was
found [14], demonstrating that, under some conditions, only one solution is stable, with
constant modal intensities Ip. Indeed, denoting the steady state value of any variable g(tü)
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with an overbar, ḡ, the function

F(tü) = 1
L à

L

0

AD(z, tü) - D̄(z)E2
2D̄(z)

dz +â
p

1
ΚLp
CIp(tü) - Īp - Īp ln

Ip(tü)
Īp
G (3.4)

verifies F ³ 0 and dF /dtü < 0. This means that F tends to zero as tü ® ¥ and, hence,
D (z, tü) and Ip (tü) must tend to their steady state values D̄ (z) and Īp. We shall get back to
this result later in this chapter. More recently [15], the relaxation towards this stable solution
was discussed for various pump profiles w (z).

The right hand side of Eqs. (3.2) and (3.3) suggests for D (z, t) and w (z) a Fourier de-
composition:

f0 =
1
L à

L

0
f dz, fn =

2
L à

L

0
f cos (2nΠz/L) dz, f = D (z, t) , w (z) . (3.5)

This transforms the system (3.2) and (3.3) into an infinite set of moment equations:

dIp

dtü = Κ C-1 + Lp KD0 -
Dnp

2
OG Ip, (3.6)

dD0

dtü = w0 - D0

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø
+

1
2
â

q

DnqIq, (3.7)

dDnp

dtü = wnp - Dnp

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø
+ KD0 +

D2np

2
O Ip +â

q¹p

Dnp-nq + Dnp+nq

2
Iq. (3.8)

Due to its intensity distribution proportional to sin2 IkpzM inside the cavity, a given mode
p of the field burns in the population inversion profile D (z, t) a grating of holes with spatial
frequency 2kp. The corresponding Fourier component is Dnp . It is sometimes referred to as
“the population grating” relative to mode p. In the early days of laser physics, Tang, Statz,
and de Marz [3] truncated Eqs. (3.6) to (3.8), retaining the mean inversion and pump, D0

and w0, as well as the population gratings Dnp but neglecting D2np and Dnp±nq . The resulting
finite set of ordinary differential equation is the TSD model. The validity of this truncation
was discussed recently in [15] with the conclusion that it is a safe approximation as long as the
pump is constant over the cavity. The TSD model accounts for stable multimode operation
and provides a good qualitative picture of how the laser relaxes to the steady state. However, it
neglects the influence of spatial inhomogeneities in the pump distribution w (z) on the laser
dynamics. This motivated D. Pieroux and P. Mandel to propose a different truncation of
Eqs. (3.6) to (3.8). They included in their model the low frequency gratings Dnp-nq where p
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and q correspond to lasing modes. They obtained what is now called the TSD+ model [11]:

wx º wnp-nq , Dx º Dnp-nq , Np º Dnp , x = np - nq,

dIp

dtü = Κ C-1 +Lp KD0 -
Np

2
OG Ip, (3.9)

dD0

dtü = w0 - D0

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø
+

1
2
â

q

NqIq, (3.10)

dDr

dtü = wr - Dr

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø
+

1
2

N-râ
q=1

Nr+qIq +
1
2

Nâ
q=r+1

Nq-rIq, (3.11)

dNp

dtü = -Np

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø
+

1
2

D0Ip +
1
2
â

q

Dp-qIq. (3.12)

p = 1,¼, N, r = 1,¼, N - 1.

In these equations, we have slightly modified the notations, reserving Dx to the low spatial
frequency gratings and using Nx to designate the high frequency gratings. The parameter
Κ, which is the ratio of the population inversion lifetime to the photon lifetime, is typically
a very large number, of the order of 103 to 106 [1, 16]. It is therefore natural to think
of adiabatically eliminating the field variables. However, a linear stability analysis of the
resulting equations would show that the transient toward equilibrium is exponential and free
from oscillations. This does not correspond to the experimental observations, which reveal
an important oscillatory dynamics in the laser. Consequently, the modal intensities must be
kept as “active” dynamical variables in the model. Finally, we note that the TSD equations
can be deduced from Eqs. (3.9) to (3.12) by setting wr>0 = Dr>0 = 0.

3.3 Antiphase Dynamics

A remarkable feature of the transient behavior of a multimode laser towards its steady state
is antiphase dynamics: while N distinct relaxation frequencies are observable in the transient
of the modal intensities Ip, the total intensity Itot = Úp Ip oscillates with only one frequency
[17, 18, 19]. This property of self-organization was also reported in the self-pulsing regimes
of solid state lasers subjected to feedback [20], and in lasers with intracavity second-harmonic
generation [21, 22]. Besides these experimental and numerical investigations, the presence
of antiphase dynamics was demonstrated analytically in the TSD equations [1, 12, 23]. Let
us extend the demonstration in the TSD+ model. To this end, we perturb the steady state
solution of Eqs. (3.9) to (3.12) in the following way

Dq(tü) = D̄q + ¶
2dq(Τ) + O(¶

3),

Nq(tü) = N̄q + ¶
2nq(Τ) + O(¶

3),

Iq(tü) = Īq + ¶iq (Τ) + O(¶
2),

Τ = ¶tü.
where D̄q, N̄q and Īq denote steady state values and ¶ = Κ-1/2 � 1. We assume that the
gain curve of the atomic transition is flat over the frequency spread of the lasing mode:
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Lq = 1 - ¶2{q + O(¶3). With this assumption, Eqs. (3.9), (3.10), and (3.12) yield for the
steady state solution the following relations:

N̄p = 2 ID̄0 - 1M + O(¶), (3.13)

w0 = D̄0 +â
p

Īp + O(¶), (3.14)

2 ID̄0 - 1M æçççç
è
1 +â

q

Īq

ö÷÷÷÷
ø
=

1
2

D̄0 Īp +
1
2
â

q

D̄p-qĪq + O(¶). (3.15)

In the first order in ¶, we obtain

dip

dΤ
= Īp Jd0 -

np

2
N + O(¶), (3.16)

dd0

dΤ
= -â

q

iq + O(¶), (3.17)

dnp

dΤ
= -N̄pâ

q

iq +
1
2

D̄0ip +
1
2
â

q

D̄p-qiq + O(¶). (3.18)

Derivating (3.16) with respect to Τ, summing over p and using relations (3.13) to (3.15), one
obtains

K d2

dΤ2
+ w0 - 1O æçççç

è
â

p

ip

ö÷÷÷÷
ø
= 0 (3.19)

which is the property we wanted to prove: deviations from the total steady state intensity
oscillate with only one frequency, the single mode relaxation oscillation frequency, no matter
how many modes are lasing in the cavity. The total intensity is therefore a global variable,
revealing self-organization in multimode lasers. This point is clearly illustrated in Fig. 3.2,
which shows the relaxation of the modal and total intensities towards stationary state. The
dimensionless oscillation frequency is

0
Κ (w0 - 1), or equivalently

0
GcΓü (w0 - 1) in s-1,

where Gc and Γü are, respectively, the cavity and inversion damping rates. This frequency is
sometimes referred to as the “McCumber frequency” [24], and is noted WR.

3.4 Analysis of a three-mode laser

In this section, we study the TSD+ model for a three-mode laser. For simplicity, we assume
that the central mode is resonant with the atomic transition, whereas the side modes are
equally detuned from the atomic line (Fig. 3.1). This amounts to impose L1 = L3 = L £ 1
and L2 = 1 in Eqs. (3.9) to (3.12).

In order to assess the influence of a nonuniform pump profile on the laser dynamics, it
is instructive to consult the TSD model first [12]. For the present set of modal gains L j, it
predicts the following scenario, as the only pump parameter w0 is increased from zero.

1. For w0 < 1, all modal intensities vanish.

2. As w0 surpasses the threshold wth,1 = 1, the central mode starts to lase, the other modes
remaining extinct.
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3. Finally, for w0 > wth,2 = L-1 all three modes lase with a constant intensity. No other
stable solution exists for this configuration.

In addition, depending on the number of lasing modes, up to two frequencies, WR and
WL, characterize the relaxation towards steady state.

For a three-mode laser, the TSD+ model assumes the following pump profile

w (z) = w0 + w1 cos (2Πz/L) + w2 cos (4Πz/L) . (3.20)

A key feature of the present analysis is that there are regions inside the cavity where longit-
udinal modal intensity distributions do almost not overlap for pairs of modes. In particular,
for the pairs of consecutive modes (I1, I2) and (I2, I3), this happens at z = L/2. For the pairs
(I1, I3), on the other hand, minimal overlap is at z = L/2±L/4. By tuning w1 and w2 one can
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Figure 3.2: Temporal evolution of the modal intensities illustrating antiphase dynamics. The transient

of each modal intensity contains multiple frequencies, while the total output consists of damped

oscillations with only one frequency. Parameter values: Κ = 1000, w0 = 2.5, w1 = -1, w2 = 1,

L1,3 = 0.99, and L2 = 1.
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Table 3.1: Modal selection as a function of the pump profile w(z) = w0 + w1cos(2Πz/L) +
w2cos(4Πz/L). The pulsations of modes 2 and 3 are Ω2 = Ω1 + Πc/L and Ω3 = Ω1 + 2Πc/L.

maximum minimum
pump profile pump profile favored pairs quenched pairs

w1 >0 z=0, L z=L/2 (I1,I2) & (I2,I3)
w1 <0 z=L/2 z=0, L (I1,I2) & (I2,I3)
w2 >0 z=0, L/2, L z=L/4, 3L/4 (I1,I2) & (I2,I3) (I1,I3)
w2 <0 z=L/4, 3L/4 z=0, L/2, L (I1,I3) (I1,I2) & (I2,I3)

intensify or diminish the pump precisely in these regions of the cavity. Therefore, through the
mechanism of spatial hole burning, one can expect more (less) efficient laser amplification for
such pairs of mode with increased (lowered) pump intensity in these regions. Hence, a non
uniform pump distribution alters mode competition. While w0 determines the total energy
injected in the laser, the role of w1 and w2 is to distribute this energy among the modes of
the cavity. A classification of the possible situations is given in Table 3.1.

Using the same geometrical argument, we can state more generally that tuning the pump
parameter wr affects the competition between pairs of modes IIp, Ip+rM.
3.4.1 Steady states and stability

The steady state solutions can be classified in relation to the number of nonzero modal in-
tensities. Their detailed expressions and stability conditions are given in Appendix 3.A. We
outline the differences with the TSD model below:

1. Beyond the second lasing threshold w0 > wth,2, the medium has sufficient gain for all
the modes to lase. In contrast with the TSD predictions, both monomode solutions
with Ī1 ¹ 0 and Ī3 ¹ 0 can be stable, besides solution Ī2 ¹ 0. This requires that
w1 > w*1 and w2 > w*2, where w*1 and w*2 are given by (3.36) and (3.37). If these two
conditions are fulfilled, the mode competition is enhanced between all pairs of mode
(see Table 1). As a consequence, if initially Ii (0) , I j (0) � Ik (0), then Ik (tü) tends to
a nonzero steady state value, suppressing the other modes through a winner-takes-all
dynamics. Figure 3.3 illustrates this point: for the same parameter values but different
initial conditions, either Ī1 ¹ 0 or Ī2 ¹ 0 emerge.

2. Other steady state solutions that can be stable in the TSD+ model but not in the TSD
version are the two-mode solutions, either with {Ī1,2 ¹ 0, Ī3 = 0}, {Ī1,3 ¹ 0, Ī2 = 0}
or {Ī2,3 ¹ 0, Ī1 = 0}. The stability conditions (3.41), (3.42) and (3.47) indicates
that in all cases, either of D̄1 and D̄2 should be larger than 2D̄0. It would be a mistake,
though, to deduce that the corresponding stationnary inversion profile D̄(z) necessarily
passes by zero. As a counter-example, consider a profile D̄(z) that is constant in a small
fraction of the cavity and zero elsewhere. Its limited Fourier series D̄0 + D̄1 cos (2Πz/L)
+D̄2 cos (4Πz/L) can be negative for some values of z. This situation was encountered
when investigating the effect of a partial filling of the cavity with the laser medium [25].

3. Finally, for a deep spatial modulation of the pump profile w (z), steady state solutions
can undergo Hopf bifurcations. Such instabilities, however, only affect multimode



3.4. ANALYSIS OF A THREE-MODE LASER 37

solutions. They give rise to stable periodic solutions. For the two-mode solutions
and in the limit L j ® 1, the Hopf bifurcation points assume simple expressions.
On the one hand, the Hopf instability of the solution {Ī1,2 ¹ 0, Ī3 = 0} arises at
w1,H = -10w0. On the other hand, for the solution {Ī1,3 ¹ 0, Ī2 = 0}, it takes
place at w2,H = -10w0. As either of w1 and w2 is further decreased a period-doubling
bifurcation occurs, followed by chaos.

Considering the proof of global stability of Eqs. (3.2) and (3.3), the presence of bistability
and self-pulsing may seem spurious and only due to the TSD+ truncation. The apparent
contradiction is resolved, however, by noting that such situations occur only if the steady
state population profile D̄ (z) > D̄0 + D̄1 cos (2Πz/L) +D̄2 cos (4Πz/L) is somewhere negative
in the cavity. In this case, the function F given by (3.4) can not be a Lyapunov function of
the system anymore.
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Figure 3.3: Temporal evolution of the modal intensities. Parameter values: Κ = 1000, w0 = 1.75,

w1 = 6, w2 = 4, L1,3 = 0.9, and L2 = 1. Depending on the initial conditions, different steady states

emerge.
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3.4.2 Self-pulsing solutions: physical mechanism

The existence of self-pulsation in the laser output relies on two facts. Firstly, a negative
inversion exists somewhere in the cavity. At this point, the medium is a saturable absorber
for the laser field. This alone is not sufficient to destabilize the constant intensity operation
because the saturable absorber has the same characteristics as the amplifier, as we noted it
when studying the dynamics of a laser with saturable absorber. Secondly, the laser operates
in the multimode regime. As already pointed out, the overlap between cavity eigenmodes
varies along the cavity axis. In the gain regions, this overlap is minimum between the excited
modes. Consequently, the saturation of amplification is also minimum. On the contrary,
in the regions of absorption, the excited modes strongly overlap and the saturation of the
medium’s response is more important. This is illustrated in Fig. 3.4 for modes 1 and 2. The
difference of saturation caused by multimode operation thus permits the onset of self-pulsing.

amplifier absorberabsorber

w(z)

MM

sin
2
(k1 z)

sin
2
(k2 z)

0

.... ....

z

Figure 3.4: Intensity overlap between consecutive cavity eigenmodes and pump spatial distribution

leading to self-pulsing. In the center of the figure, the laser medium and cavity mirrors (M) are

represented schematically.
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To conclude this interpretation, let us mention that not all laser materials can display
negative inversion of population. Indeed, in the so-called four-level atomic systems [26],
which include neodymium, the lower level of the optical transition has a very short lifetime
compared to the upper level. A negative inversion, caused by a lack of pumping, is therefore
impossible. Examples of laser materials that do absorb the laser field if not pumped are
ruby [26], holmium (Ho) and thulium (Tm) [27], and semiconductors.

3.4.3 Self-pulsing solutions: analytical treatment

The linear stability analysis giving the Hopf bifurcation is rather complicated algebraically.
As shown in Fig. 3.5, close to bifurcation point, the solution assumes a pulsed behavior. To
describe this part, we propose to seek a solution of the form:

Ip (tü) = ¶2-2xip (Τx) , Dp (tü) = wp + ¶
2-xdp (Τx) , Np (tü) = ¶2-xnp (Τx) ,

¶ = Κ-1/2, Τx = ¶
-xtü, 0 < x < 1. (3.21)

Above, Τx is the timescale of the interpulse and is not fixed a priori. Moreover, we assume
that the average pump parameter is close to the lasing threshold and that the modal gains are
close to unity: w0 = 1 + ¶2-xw̄0, Lq = 1 - ¶2-x{q. In the leading order, we thus obtain

dip

dΤx
= Jw̄0 - {p + d0 -

np

2
N ip + O I¶2-xM , (3.22)

dd0

dΤx
= -w0â

q

iq + O (¶
x) , (3.23)

dnp

dΤx
=

1
2

w0ip +
1
2
â

q

wp-qiq + O (¶
x) . (3.24)

For the nonzero modal intensities, we may pose yp = ln ip, and obtain the set of nonlinear
equations

d2yp

dΤ2
x

= -
1
4

w0 exp yp -â
q

Jw0 +
wp-q

4
N exp yq + O (¶

x) . (3.25)

For some domain of parameter values, the solution of this equation diverge at a finite time.
This corresponds to the emergence of a pulse in the original set of equations. As Τx tends to
the time of divergence Τ*x, we try the ansatz yp (Τx) = Ap + Bp ln IÄÄÄΤx - Τ*x

ÄÄÄM. Substituting into
(3.25), we obtain, Bp = -2, and the following set of algebraic equations

2 = -
1
4

w0eAp -â
q

Jw0 +
wp-q

4
N eAq . (3.26)

Let us solve this system in the two-mode and three-mode cases. First, if the self-pulsing
solution is bimodal with {Ī1,2 ¹ 0, Ī3 = 0} then one has only two equations

2 = -
3
2

w0eA1 - Jw0 +
w1

4
N eA2 , 2 = -

3
2

w0eA2 - Jw0 +
w1

4
N eA1 ,

Þ eA1 = eA2 =
-8

10w0 + w1
.
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Figure 3.5: a) Bifurcation diagram with Κ = 1000, w0 = 1.1, w2 = 4, L1,3 = 0.99, and L2 = 1. w1 is

varied in the range [-11.3,-11]. Minima and maxima of I2 are plotted versus w1. b) Temporal trace

of I2 for w1 = -11.2, showing a pulsed behavior.

Hence such an interpulse solution exists only if w1 < -10w0, which is precisely the Hopf
bifurcation condition found from a linear stability analysis. In the same way, the condition
w2 < 10w0 is obtained for the periodic solution with {Ī1,3 ¹ 0, Ī2 = 0}. Next, for the
three-mode self-pulsing solution, one has the set of equations

8 = -6w0eA1 - (4w0 + w1) e
A2 - (4w0 + w2) e

A3 , (3.27)

8 = - (4w0 + w1) e
A1 - 6w0eA2 - (4w0 + w1) e

A3 , (3.28)

8 = - (4w0 + w2) e
A1 - (4w0 + w1) e

A2 - 6w0eA3 , (3.29)



3.5. CONCLUSION 41

Þ eA1 = eA3 =
8w0 - 4w1

f (w0, w1, w2)
, eA2 =

8w0 - 8w1 + 4w2

f (w0, w1, w2)
,

f (w0, w1, w2) = -14w2
0 + 8w0w1 + w2

1 - 3w0w2. (3.30)

The condition of existence for the periodic solution is therefore given by f (w0, w1, w2) > 0,
in good agreement with the numerical simulations.

We have constructed in this way, in the self-pulsing domain, a solution of small amp-
litude, being of order ¶2-2x, which is expected to connect two consecutive pulses. The pres-
ence of the pulse is attested by the divergence. The so far unspecified timescale parameter x
and pulse time Τ*x would be determined by matching conditions with the pulse part of the
solution. It is tempting to say that it is not a solution that emerges from the Hopf bifurcation
since the solution should be harmonic in time close to the bifurcation point and hence that
the bifurcation is subcritical. Actually, the bifurcation diagram in Fig. 3.5 shows that the bi-
furcation is supercritical for the chosen set of parameters. The oscillations that are harmonic
close to the bifurcation point already acquire higher harmonics as w1-w1,H = O (¶). Such sin-
gular behavior, connected to the presence of a small parameter in the equations is reminiscent
to our study of a laser with a weakly saturable absorber. This consolidates our interpretation
of the phenomenon. Finally, numerical simulations indicate that period doubling and chaos
follow the periodic intensity pulsations (Fig. 3.5) for deeper spatial modulations of the pump
profile.

3.5 Conclusion

The TSD+ model extends the TSD model by the inclusion of low spatial frequency Four-
ier components of the inversion profile D (z, tü) in the rate equations. We concluded from
geometrical considerations that the competition between lasing modes p and q is strongly
affected by the component Dp-q. In the particular case of a three-mode laser, we found that
the effect can be sufficiently important to generate new stable steady states. In principle,
this should remain true for a laser emitting on more than three modes. The investigations
reported in [25] for five modes support this view. For extreme spatial modulations of the
pump profile, the multimode steady states can be destabilized by Hopf bifurcations. We
have provided a physical explanation of this phenomenon in terms of saturable absorption
combined with multimode operation. We note that this instability could find application in
semiconductor lasers as a means to produce controlled intensity pulses without the need of a
different material as a saturable absorber. In these devices, the modulation of the pump pro-
file over the cavity length can easily be achieved by a proper design of the electrodes. Besides
self-pulsing, we found that it is possible to observe bistability between different steady-states.
These two features, which had been regarded as impossible since the discovery of the Lya-
punov function (3.4), are easily explained by the fact that the steady state inversion D̄ (z)
passes by zero. Moreover, we showed that the important property of antiphase dynamics still
exists in the new model, in agreement with experimental observations. It seems that this
property is generic of multimode homogeneously broaden lasers and that its validity extends
beyond the vicinity of the steady state. For instance, it was found numerically to persist in
the chaotic state of a laser with modulated losses [28]. In the present case too, preliminary
numerical situation tend to show that antiphase dynamics persist in the strongly pulsating
and chaotic domain.



42 CHAPTER 3. SOLID STATE LASERS WITH SPATIALLY DISTRIBUTED GAIN

To close this chapter, we refer to [25] again, where the TSD+ model was compared to
the global rate Eqs. (3.2) and (3.3) through numerical simulations. It was concluded that the
TSD+ model is a very good approximation, considering its relative simplicity.



Appendix to Chapter 3

3.A Details of the linear stability analysis

In this Appendix, we present the steady state solutions and the conditions of their linear
stability. These results are obtained by substituting eigenvalues of the form Λ = ¶-1Λ-1+Λ0+
¶Λ1 + ¼ with ¶ =

0
Κ in the characteristic polynomials and solving for ¶ ® 0. Although

the external parameters of the system are w0, w1, and w2, it is much more convenient, from
algebraic point of view, to parametrize the solutions in terms of the steady state values D̄0,
D̄1, D̄2. This leads us to formulate for each solution the set of functions Ī j ID̄0, D̄1, D̄2M,
N̄ j ID̄0, D̄1, D̄2M, and w j ID̄0, D̄1, D̄2M.

Before going into details, we identify a general stability condition for solutions having
Īq = 0:

N̄q ID̄0, D̄1, D̄2M > 2 ID̄0 -L
-1
q M . (3.31)

Otherwise, the mode q starts lasing. Most other stability conditions are too complicated to
be expressed for arbitrary values of Lq. We will therefore give them only in the limitLq ® 1.

Trivial solution

It is given by Ī j = N̄ j = 0, D̄ j = w j and it is linearly stable if and only if w0 < 1.

Monomode solution {Ī1 ¹ 0, Ī2,3 = 0}

It is given by

Ī2 = Ī3 = 0, Ī1 = 2
LD̄0 - 1
2 -LD̄0

, (3.32)

N̄1 = 2 ID̄0 -L
-1M , N̄2 = D̄1

D̄0 -L-1

D̄0
, N̄3 = D̄2

D̄0 -L-1

D̄0
,

w0 =
-LD̄2

0 + 4D̄0 - 2L-1

2 - LD̄0
, w1 = D̄1

2D̄0 - L-1

D̄0 I2 -LD̄0M , w2 = w1
D̄2

D̄1
. (3.33)

The solution {Ī3 ¹ 0, Ī1,2 = 0} is obtained by permuting IĪ1, N̄1M and IĪ3, N̄3M. This solution is
physically acceptable if Ī1 > 0, that is if L-1 < D̄0 < 2L-1.

In the limit L ® 1, it is linearly stable if

D̄1 > 2D̄0, (3.34)

D̄2 > 2D̄0. (3.35)

43
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One can therefore parametrize the stability boundaries in the parameter space (w0, w1, w2) by

Iw0, w*1, w2M = K-∆2 + 4∆ - 2
2 - ∆

, 2
2∆ - 1
2 - ∆

, ΗO , (3.36)

Iw0, w1, w*2M = K-∆2 + 4∆ - 2
2 - ∆

, Η, 2
2∆ - 1
2 - ∆
O , ∆ Î ]1, 2[ , Η Î ]¥,¥[ (3.37)

The linear stability analysis also reveals damped oscillation with frequencyWR =
0
Κ (w0 - 1).

Monomode solution {Ī2 ¹ 0, Ī1,3 = 0}

It is given by

Ī2 = 2
D̄0 - 1
2 - D̄0

, Ī1 = Ī3 = 0, N̄2 = D̄0 - 1, N̄1 = N̄3 = D̄1
D̄0 - 1

D̄0
,

w0 =
-D̄2

0 + 4D̄0 - 2
2 - D̄0

, w1 = w0
D̄1

D̄0
, w2 =

D̄0D̄2

2 - D̄0
. (3.38)

The positivity of Ī2 requires 1 < D̄0 < 2. This constraint determines D̄0 as a function of w0

in a unique way when the system is in state {I2}.
In the limit L ® 1, it is stable provided that

D̄1 > 2D̄0. (3.39)

Moreover the linearized system of equation admits solutions with damped oscillations at
frequency WR =

0
Κ (w0 - 1).

Two-mode solution {Ī1,2 ¹ 0, Ī3 = 0}

This solution is

Ī1 = 4
ID̄0 - 1M D̄1 - 2D̄0 ID̄0 - L-1MID̄1 - 2D̄0M ID̄1 - 6D̄0 + 4 I1 + L-1MM , Ī2 = 4

D̄1 ID̄0 -L-1M - 2D̄0 ID̄0 - 1MID̄1 - 2D̄0M ID̄1 - 6D̄0 + 4 I1 +L-1MM ,
Ī3 = 0, N2 = 2 ID̄0 - 1M , N1 = 2 ID̄0 -L

-1M ,
N3 = ;D̄1 CD̄1

2
ID̄0 - L

-1M - D̄0 ID̄0 - 1MG + D̄2 CD̄1

2
ID̄0 - 1M - D̄0 ID̄0 -L

-1MG? CD̄2
1

4
- D̄2

0G-1

,

w0 = D̄0 +L
-1Ī1 + Ī2, w1 = I1 + Ī2 + Ī1M D̄1 -

1
2
IĪ1N2 + Ī2 (N1 + N3)M ,

w2 = I1 + Ī1 + Ī2M D̄2 -
1
2

Ī1N3. (3.40)

The solution {Ī2,3 ¹ 0, Ī1 = 0} is obtained by permuting IĪ1, N̄1M and IĪ3, N̄3M. In the limit
L ® 1, two stability conditions are

D̄2 > 2D̄0, (3.41)

D̄1 < 2D̄0. (3.42)
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We find a frequency WL =
1
ΚĪ2 I2D̄0 - D̄1M /4 associated to damped oscillations. In addi-

tion, there is a pair of complex conjugate roots that have their imaginary part equal to the
McCumber frequency

Λ3,± = a ± iW, W = WR + O(Κ
-1/2), a = -

w1 + 10w0

2 I16 - 6D̄0 + D̄1M + O(Κ-1). (3.43)

The real part of this pair of roots is positive if w1 + 10w0 < 0. In that case, the system
undergoes a Hopf bifurcation.

Two-mode solution {Ī1,3 ¹ 0, Ī2 = 0}

This solution is

Ī2 = 0, Ī1 = Ī3 = 4
LD̄0 - 1

8 - 6LD̄0 + LD̄2
, (3.44)

N̄2 = 2D̄1
D̄0 - L-1

D̄0 + D̄2/2
, N̄1 = N̄3 = 2 ID̄0 - L

-1M ,
w0 =

16D̄0 - 6LD̄2
0 +LD̄2D̄0 - 8L-1

8 - 6LD̄0 + LD̄2
, (3.45)

w1 =
D̄1 I4 - 2LD̄0 +LD̄2M I-4 + 6LD̄0 +LD̄2M

L I2D̄0 + D̄2M I8 - 6LD̄0 +LD̄2M ,

w2 =
LD̄2

2 - 8LD̄2
0 + 2LD̄0D̄2 + 16D̄0 - 8L-1

8 - 6LD̄0 + LD̄2
. (3.46)

The positivity of the intensities requires ID̄0 -L-1M I8 - 6LD̄0 +LD̄2M > 0.

In the limit L ® 1, stability requires

D̄1 > 2D̄0 + D̄2, (3.47)

which implies a depletion of the inversion profile at the center of the cavity and therefore
a competition between mode 1 and modes 2 and 3. If this condition is not fulfilled, a
transition to the three-mode solution {Ī1,2,3 ¹ 0} takes place. We find a frequency WL =1
ΚĪ1 I2D̄0 - D̄1M /4 associated to damped oscillations. In addition, there is a pair of complex

conjugate roots associated with the McCumber frequency

Λ5,± = a ± iW, W = WR + O(Κ
-1/2), a = -

w2 + 10w0

2 I16 - 6D̄0 + D̄2M + O(Κ-1). (3.48)

A Hopf bifurcation therefore occurs at w2 + 10w0 = 0.

Three-mode solution {Ī1,2,3 ¹ 0}

This solution is given by
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N̄2 = 2 ID̄0 - 1M , N̄1 = N̄3 = N̄ = 2 ID̄0 -L
-1M ,

Ī2 = A4N̄D̄1 - N̄1 I2D̄0 + D̄2MEM-1, Ī1 = Ī3 = Ī = IN̄1D̄1 - 2N̄D̄0MM-1,

w0 = D̄0 +LĪ1 + Ī2 +LĪ3, w2 = I1 + Ī2 + Ī1 + Ī3M D̄2 -
1
2
IĪ1N̄3 + Ī3N̄1M ,

w1 = I1 + Ī2 + Ī1 + Ī3M D̄1 -
1
2
AĪ1N̄2 + Ī2 IN̄1 + N̄3M + Ī3N̄2E . (3.49)

where

M = D̄1 AD̄1 - 2 IN̄ + N̄2ME + D̄0 A4N̄ + 2N̄2 - I2D̄0 + D̄2ME + D̄2N̄2. (3.50)

Due to the algebraic complexity of the problem, we can only give partial results on the linear
stability of the solution. In the limit L ® 1, we find among the roots of the characteristic
polynomial

Λ± =
1
2

ìïï
íïï
î

- I1 + 2Ī + Ī2M ±
2
I1 + 2Ī + Ī2M2 - ΚĪ I2D̄0 - D̄2Müïïýïï

þ

. (3.51)

Since Κ � 1, these roots are complex conjugate with negative real part if D̄0 > D̄2/2. The

imaginary part is WL =
1
ΚĪ I2D̄0 - D̄2M /4 + O IΚ-1/2M . Otherwise, they are real and Λ+ is

positive. This instability is linked to the competition between modes 1 and 3. If D̄2 > 2D̄0,
either mode 1 or mode 3 is extinguished.
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Chapter 4

Global coupling with time delay in
semiconductor laser arrays

4.1 Introduction

Semiconductor lasers (SCL’s), benefitting from the achievements in the industry of electron-
ics, are now easily produced and at low cost. Furthermore, the amount of electromagnetic
energy that can be extracted from a semiconductor material by unit volume exceeds by far
the performances of other lasing materials, such as solid state or gas lasers. These advantages
made semiconductor lasers the optical source of choice in diverse applications from telecom-
munications to medicine. The need for more optical power has led laser physicists to design
semiconductor lasers with a large surface of emission, called “broad area lasers”. These high
power sources find applications in laser printers, solid-state laser pump and space communic-
ation. However, carrier diffusion and light diffraction produce undesired spatial instabilities
in the transverse plane of the laser [1]. As a consequence, light is not emitted uniformly
on the transverse plane of the laser. Specifically, filamentary regions with high intensity are
separated by other regions where the intensity is almost zero. This phenomenon is called
filamentation [2]. When it occurs, the optical gain of the semiconductor material is not op-
timally used and the output beam characteristics are poor. To overcome this problem, it was
proposed to divide the large, broad area laser into many lasing units that are too small for
filamentation. Linear arrays of edge emitting SCL producing tens to hundred of watts of cw
power are now commercially available but typically with 1-THz linewidths. With the advent
of Vertical Surface Emitting SCL, two-dimensional laser arrays also become possible.

A key issue relative to these devices is to lock the phases of the electromagnetic fields emit-
ted by each lasing element. In this way, the linewidth of the total output is reduced because all
lasers acquire the same frequency. On the other hand, it is advantageous to lock the emitted
fields in-phase. By interference in the far field, this leads to a concentration of almost all the
output power in a single narrow lobe (Figure 4.1). In order to achieve such a synchroniza-
tion, the lasers should be coupled to each other. In this respect, it was soon realized [3] that a
coupling between nearest-neighbor elements induces anti-phase synchronization more easily
than in-phase synchronization. Anti-phase synchronization means that each laser is dephased
by Π from the adjacent elements. As illustrated in Fig. 4.1, this produces a double-lobed
far field pattern. In addition, for a broad range of coupling strength, the nearest-neighbor
coupling leads to a chaotic behavior of the array [4]. On the other hand, it was shown [5]

49
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Figure 4.1: Far field pattern of the intensity emitted by a laser array if the lasers are desynchronized,

synchronized in-phase, and synchronized in antiphase.

that if each laser is coupled equally to all other elements in the array, the preferential state
of synchronization is the in-phase state. The effect of such a global coupling on a laser array
with randomly distributed optical frequencies was also theoretically investigated [6]. This
leads us to consider an array of semiconductor lasers that are weakly and globally coupled
by the optical feedback of an external mirror, as depicted in Fig. 4.2. A similar scheme was
recently used to stabilize the emission of a broad area laser [7]. A different but closely related
configuration was also recently implemented with a commercial diode laser array [8]. Due
to the finite speed of light, the interaction between lasing elements is delayed. How this
delay impacts on the synchronization will be the central question in this chapter. Numerical
simulations were done for this system [9] that tend to extend the conclusions of [5] to the
case where the coupling is delayed: with the increase of the coupling strength, the lasers lock
in-phase. The idea to use optical feedback in order to synchronize a laser array was already
exploited in [10]. However, up to now, only strong coupling has been considered, which
raises some technical difficulties. The very small transverse size of the SCL’s, of the order of
a few microns, makes it difficult to efficiently reinject a substantial fraction of the emitted
field back into their active region. Usually, the mirror is placed a few millimeters away from
the array, typically at the Talbot distance. With such a small external cavity length, the only
effect of the delay is to change the phase of the reinjected field. The field amplitudes, on the
other hand, can be considered as constant over the short external cavity round-trip time.

The problem of coupled lasers can be cast in a more general context. Multimode lasers [11,
12], arrays of Josephson junctions [13], reaction-diffusion systems [14], neural networks in
the brain [15] and rhythmic applause in concert halls [16] are other examples of systems that
consist of interacting elementary units. An important class of such systems is that of weakly
coupled oscillators: if the coupling does not modify significantly the phase space trajectories,
one phase variable suffices to describe each oscillating element. This leads to phase models,
including the extensively studied Kuramoto equations [14, 17]. In recent years, it was real-



4.1. INTRODUCTION 51

Figure 4.2: Schematic representation of a SCL array with global optical coupling between the lasers.

d is the transverse size of the array. The spherical feedback mirror M of radius r is placed at the focus

of the converging lens CL and at a distance L from the array. A is an attenuator that controls the

strength of the coupling. If the lateral dimension d of the array is small compared to the external

cavity length L, the optical length difference ∆ is approximately bounded by r (d/2L)2. For instance,

if d = 1 mm, r = 1 mm, L = 10 cm, ÄÄÄ∆ÄÄÄ £ 2.5 10-8 m, which is much shorter than one optical

wavelength. Therefore, we may assume that J jn = J̄ for all laser indices j and n in Eq. (4.1).

ized that delaying the interactions between elementary cells can have a profound influence
on their collective behavior. The principal consequences of time delay documented for phase
models concern the occurrence of synchronization [18, 19] and multistability between states
of synchronization [20]. However, if the coupling strength is comparable to the attraction to
the limit cycle, amplitude quenching or “oscillation death” can also result from the delay [21].
From the general viewpoint of coupled oscillators, the physical system we study in the present
chapter mixes the two situations. For very small values of the coupling strength, the electric
field emitted by each SCL is essentially described by its optical phase and the system can
be modelled by coupled phase equations of the Kuramoto type. However, increasing the
coupling strength gives rise to time periodic intensities by way of a Hopf bifurcation. The
amplitude of the limit cycle created by this mechanism then strongly depends on the coup-
ling strength. Each element of the array thus becomes a two-frequency oscillator with one
frequency in the optical domain and the other frequency corresponding to sustained relaxa-
tion oscillations and typically lying in the GHz range for a SCL. To investigate the dynamics
of this system, we derive in this chapter a set of phase equations that generalizes the Kuramoto
model by the addition of second and third order derivatives of the phase variables.

We show that the constant intensity, or cw, regimes can be either in-phase or out-of-phase.
The in-phase steady state can bifurcate towards a time periodic regime where the intensities
delivered by each laser oscillate either in phase or in antiphase. The bifurcation to the in-
phase time periodic regime does not exist in the absence of a delayed feedback. It is therefore
a delay-induced bifurcation. Maximization of the array output is achieved if parameters are
selected such that the bifurcation occurs toward the in-phased periodic regime.
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The remainder of this chapter is organized as followed. In Sec. 4.2, we describe the model
and introduce the evolution equations. In Sec. 4.3 and 4.4, we study the synchronization
properties of the SCL array in the cw regime and calculate the self-pulsing thresholds from
the cw states. For the in-phase steady state, there are two possible thresholds: a degenerate
Hopf bifurcation leading to antiphase periodic laser intensities and a regular Hopf bifurcation
leading to in-phase periodic laser intensities. In Sec. 4.5 we present an analytical treatment
of the synchronization in the self-pulsing domain in the simplifying limit of a large linewidth
enhancement factor. Finally, we conclude.

The results of this chapter were published in part in [22].

4.2 Model

Each laser element in the array, labelled by an index j, is modelled by a complex electric
field variable E j and a material variable Z j. In the absence of any coupling with the other
lasers and if no feedback is present, the field E j rotates at a natural frequency Ω j, which
can differ from one laser to another. The material variable Z j quantifies the excess carrier
density relative to the lasing threshold in the absence of any external coupling. It is rescaled
in order to treat dimensionless order one quantities. A single laser subjected to a weak optical
feedback is known to be well described by the Lang-Kobayashi equations [23]. Therefore,
the mathematical model of our system will be a set of N coupled Lang-Kobayashi equations
in dimensionless form:

dE j

dt
= iΩ jE j + (1 + iΑ)Z jE j + i

Χ

2
e-iΖ IE j-1 + E j+1M + i

Η

N

Nâ
n=1

e-iJ jnEn (t - tD) , (4.1)

dZ j

dt
= Γ BPj - Z j - I1 + 2Z jM ÄÄÄÄE j

ÄÄÄÄ2F . (4.2)

with periodic boundary conditions E0 = EN , EN+1 = E1. In these equations, the time
unit is the photon cavity lifetime Τc º 1/Gc > 2 ´ 10-12 s and Γ º Γü/Gc > 10-3 is
the ratio of the carrier relaxation rate to the cavity damping rate. The parameter Α is the
linewidth enhancement factor, which accounts phenomenologically of the band structure of
the semiconductor material. A typical value of Α is 5. Pj is the excess pump parameter of laser
j, which is proportional to the injection current above threshold. We suppose that all lasers
operate in the same single longitudinal mode of the short cavity. This may require the use of
frequency selection techniques [24] or to pump the lasers not too far above lasing threshold.
The jth laser has a lasing frequency Ω j/Τc in the absence of optical feedback and coupling
between the lasers. We denote by P̄ and Ω̄ the average pump and optical frequency over the
SCL array. Hereafter we will assume that the deviations

ÄÄÄÄPj - P̄
ÄÄÄÄ and

ÄÄÄÄΩ j - Ω̄
ÄÄÄÄ are small.

The parameter Η describes the global coupling strength due to the external mirror. The
phase of this coupling is a constant plus the optical dephasing accumulated in the external
cavity between lasers n and j. It is denoted by Jn j and the mean value over all couples of
lasers j and n is J. Note that, for symmetry reasons, we do not follow in Eqs. (4.1) and (4.2)
the commonly adopted notations in which the feedback term appears without imaginary
unit i [25]. This, however, is equivalent to setting J = Π/2, or shifting the position of the
external mirror by one eighth of the optical wavelength. Since the exact value of the external
cavity length is not known with this precision, we may simply set J equal to zero. The phase
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Table 4.1: List of symbols
symbol signification value

E j electric field emitted by laser j

Z j excess carrier density in laser j relative to transparency

in the absence of coupling

Ω j (Ω̄) natural optical frequency of j (mean frequency) 1015 Hz

Pj (P̄) pump parameter of laser j (mean pump) 1.5
Α linewidth enhancement factor 5
Χ coupling strength between adjacent lasers due to evanescent fields 10-4 - 10-5

Ζ phase of the local coupling Χ 0
Η global coupling strength due to external mirror 10-4 - 10-3

Jn j (J̄) optical dephasing due to external cavity roundtrip from laser n to j 0

(mean dephasing)

Gc internal cavity damping rate 1012 s-1

tD external cavity roundtrip time normalized by G-1
c 1 - 1000

Γ carrier relaxation rate normalized by Gc 10-3

W j (W̄) natural relaxation frequency of laser j normalized by Gc (mean frequency) 0.03 (>10 GHz)

dispersion
ÄÄÄÄJn j - J̄

ÄÄÄÄ can be made small if the feedback mirror (with radius r� L) is placed at
the focus of a converging lens and sufficiently far from the SCL array (See Fig. 4.2). Hereafter,
the theoretical conclusions will therefore be stated for Jn j = 0. The global coupling is also
characterized by an important parameter tD = 2L/ (cΤc), which is the external cavity round-
trip time normalized by Τc. The parameters Χ and Ζ measure, respectively, the strength and
the phase of the local coupling that can arise due to the interaction between neighboring
lasers via evanescent fields. Note that the phase of the local coupling Ζ is usually assumed to
be zero [4]. Finally, we will assume that the coupling between the lasers is weak: Η, Χ � 1.
The signification and value of the symbols is summarized in Table 4.2.

4.3 Synchronization below self-pulsing threshold

4.3.1 In-phase synchronization

In this Section, we discuss the steady states of Eqs. (4.1) and (4.2) and their stability as a
function of the strength Η and the delay tD of the global coupling. By steady state, we mean
that the intensities are constant, contrary to the field phases, which can still vary. Both cw
in-phase and antiphase solutions exist. To determine which of these is effectively chosen by
the system, we study their linear stability. Since we are mainly interested in the effect of time
delay on the synchronization of globally coupled lasers, we present a detailed stability analysis
for the case Χ = 0 and only briefly discuss the influence of the local coupling on the stability
properties of cw states. Expressions of the stability conditions which are valid for nonzero Χ
are given in Appendix 4.A. As we mention it in the introduction, the optical feedback can
destabilize the SCL array from its cw operation. However, before Η exceeds the self-pulsing
threshold, the SCL’s deliver a constant intensity. Below this threshold the stability of the
steady state justifies that Z j and the modulus of the fields

ÄÄÄÄE j
ÄÄÄÄ can be adiabatically eliminated

in (4.1) and (4.2). In the limit
ÄÄÄÄPj/ P̄ - 1

ÄÄÄÄ = ÄÄÄÄ∆Pj
ÄÄÄÄ � 1, this yields the following set of N
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coupled equations for the field phases Φ j (t):

dΦ j

dt
= Ω j -

Η
0

1 + Α2

N

Nâ
n=1

sin AJ jn + Φ j - Φn (t - tD) - cot-1 ΑE
-
Χ
0

1 + Α2

2
â

q=1,-1

sin IΦ j - Φ j+q + Ζ - cot-1 ΑM , (4.3)

with the boundary conditions Φ0 = ΦN , ΦN+1 = Φ1. Note that the effective coupling strength

in (4.3) is proportional to
0

1 + Α2 and therefore increases with the linewidth enhancement
factor Α. If local interactions are negligible, Χ � Η, and if

ÄÄÄÄJ jn
ÄÄÄÄ� 1, Eqs. (4.3) reduce to the

Kuramoto equations with a time delay [18, 19]. In addition, let all the lasers be identical, so
that Ω j = Ω̄. The in-phase solutions of (4.3) are given by Φ j = Φk = Ωt with the common
frequency Ω obeying the transcendental equation

Ω = Ω̄ -
0

1 + Α2Η sin IΩtD - cot-1 ΑM . (4.4)

This equation can have multiple solutions. They correspond to the external cavity modes
(ECM) of the single laser [25] which grow in number with increasing ΗtD. The linear stability
analysis of the in-phase cw (See Appendix 4.A) state defines triangular domains in the (Ω̄tD,Η)
parameter space where this solution is unstable:

Π

2
+ ΗtD

0
1 + Α2 £ Ω̄tD - cot-1 Α - 2nΠ £

3Π
2
- ΗtD

0
1 + Α2, (4.5)

where n is an arbitrary integer. These triangles of instability are shown in Figures 4.3 and 4.4
for two values of the delay tD. These inequalities are consistent with results derived in [18]
and obtained in the limit N ® ¥. In Eq. (4.5) the time delay appears in two well separated
time scales: Ω̄tD and ΗtD. Since Η � 1 � Ω̄, the variation of the external cavity length L
over one optical wavelength leads to a variation of 4Π for Ω̄tD but leaves ΗtD almost constant.
Therefore we can consider Ω̄tD and ΗtD as independent parameters of the problem. Inside the
domain defined by (4.5), in-phase synchronization is lost in favor of antiphase cw regimes.
The size of these instability domains is inversely proportional to ΗtD. Therefore, to increase
the time delay favors in-phase cw operation. In Sec. 4.4, we shall define selfpulsing thresholds

ΗH1, ΗH2 to periodic intensities. If tD is sufficiently large and if Π J2tD

0
1 + Α2N-1

< Η < ΗH1,2,

stable cw in-phase operation exists for all values of Ω̄tD. This is due to the overlap of stability
domains of cw in-phase solutions corresponding to different ECM.

4.3.2 Antiphase synchronization

The antiphase cw solutions are defined by

Φ j = Ω̄t + 2 jMΠ/N, (4.6)

where the integer M determines the type of antiphase state. In the absence of local coupling,
the linear stability analysis indicates that the antiphase state (4.6) is neutrally stable with N-1
zero eigenvalues. This neutral stability is related to the existence of a (N - 1)-dimensional
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Figure 4.3: Stability boundaries of cw solutions. The parameters values are the same as in Fig. 2.

L = 13.7 cm + ∆L. In-phase states corresponding to different ECM are stable in the grey areas (I

and II). In the regions II stable antiphase and in-phase states coexist. In the white triangular regions

III only antiphase states are stable. Curves H1,2 indicate the locations of Hopf bifurcations. The

antiphase Hopf bifurcation precedes the in-phase Hopf bifucation.

invariant manifold in the phase space of Eq. (4.3). It is the manifold spanned by the antiphase
solutions that verify the relation Ú j exp IiΦ jM = 0 [26, 27, 28]. We find the following neutral
stability domains of the antiphase cw solutions (4.6)

Π

2
+
ΗtD

2

0
1 + Α2 £ Ω̄tD - cot-1 Α - 2nΠ £

3Π
2
-
ΗtD

2

0
1 + Α2. (4.7)

Let us now relax the assumption Ω j = Ω̄. Then, in the large N limit, assuming a Lorent-

zian distribution for the natural frequencies, g (Ω¢) = (G/Π) AG2 + (Ω¢ - Ω̄)2E-1
, the stability

condition for the desynchronized state becomes [18, 19]

Η < Ηc º
2G0

1 + Α2 cos IΩtD - cot-1 ΑM , (4.8)

where Ω verifies the equation (4.39) with Η = Ηc and Χ = 0. Note that, as G ® 0, the stability
boundary defined by (4.8) transforms into (4.38) with Χ = 0.

Finally, we note that the phase equations (4.3) are valid in the limit Η, Χ,
ÄÄÄÄ∆Pj
ÄÄÄÄ � 1 and

below the self-pulsing threshold. Under these assumptions, the stability conditions obtained
in this Section agree with the linear stability analysis of the full equations (4.1) and (4.2).
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Figure 4.4: Stability boundaries of cw solutions. The parameters values are the same as in Fig. 2.

L = 44 cm + ∆L. In-phase states corresponding to different ECM are stable in the grey areas (I and

II). In the regions II stable antiphase and in-phase states coexist. In the white triangular regions III

only antiphase states are stable. Curves H1,2 indicate the locations of Hopf bifurcations. The in-phase

Hopf bifurcation preceds the antiphase one.

4.4 Self-pulsing instabilities

In order to describe Hopf bifurcations of the in-phase cw state leading to solutions with self-
pulsing laser intensities, we return to the original set of coupled Lang-Kobayashi equations
(4.1) and (4.2). We confine our treatment to the case of identical lasers by setting Ω j = Ω̄
and Pj = P̄. The complete in-phase cw solution of Eqs. (4.1) and (4.2) is then

E j (t) = K P̄ + Η sinΩtD + Χ sin Ζ
1 - 2Η sinΩtD - 2Χ sin Ζ

O1/2

eiΩt , (4.9)

Z j (t) = -Η sinΩtD - Χ sin Ζ. (4.10)

where Ω is the solution of (4.4). Besides the desynchronization boundaries (4.5), a linear sta-
bility analysis of (4.9) and (4.10) reveals the existence of two different types of Hopf bifurc-
ations leading to self-pulsing solutions. The bifurcations of the first type are associated with
perturbations transverse to the synchronization manifold {E1 = ¼ = EN , Z1 = ¼ = ZN}. In
the limit of a weak global coupling Η � 1 and neglecting local coupling Χ, these bifurcations
merge into a single (N - 1)-fold degenerate bifurcation defined by

Η = ΗH1 º
Γ I1 + 2P̄M0

1 + Α2 cos IΩtD + cot-1 ΑM . (4.11)
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The associated relaxation oscillation frequency is I2ΓP̄M1/2
. Such a degeneracy is known to

produce multiple branches of antiphase self-pulsing solutions [12]. The antiphase character
of the emerging sustained relaxation oscillations partially destroys the in-phase synchroniza-
tion of the cw state. This can be seen on the bifurcation diagram in Fig. 4.5. The branch A-P
represents minima and maxima of the total field amplitude as a function of Η corresponding
to antiphase relaxations in the intensities. With the increase of Η, the average total field de-
creases. The solutions describing these intensity oscillations will be constructed in the next
section.

Figure 4.5: Branches of self-pulsing solutions bifurcating from the in-phase cw state obtained by

simulating numerically Eqs. (4.1) and (4.2) with N = 5, mod (Ω̄tD, 2Π) = 0.14 and tD = 91.7, which

corresponds to j > W̄tD = 5.02 and ΤD = 0.18. Minima and maxima of the total field are plotted

as functions of Η. Other parameters are the same as in Fig 2. The secondary bifurcation ΗΘ (ΗΦ)
corresponds to KΘ (KΦ) discussed in Sec. 4.5.1. Dotted lines are the analytical approximations for the

self-pulsing solutions obtained using (4.24)-(4.26) and (4.30)-(4.31).

Another Hopf bifurcation, which is always nondegenerate, is located at

Η = ΗH2 º
ΗH1

1 - cosj
, j º WH2 ItD, P̄, ΓM ´ tD. (4.12)

Note that the bifurcation condition (4.12) is independent of Χ and is identical to that of a
solitary laser with a feedback strength Η instead of Η/N in (4.1). The frequency WH2 charac-
terizing the oscillations at Η = ΗH2 satisfies the transcendental equation

WH2 = I2ΓP̄M1/2
+ Γ IP̄ + 1/2M cot KWH2tD

2
O . (4.13)

This equation has an infinity of solutions, each producing a different ΗH2 through the discrete
values of j in Eq. (4.12). The periodic solution that bifurcates at Η = ΗH2 lies within
the synchronization manifold. It is therefore characterized by in-phase synchronization not
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only in the oscillations at the optical frequency Ω, but also in the relaxation oscillations
at frequency WH2. The resulting average total field amplitude is therefore maximum, as
illustrated by the branch I-P in Fig. 4.5.

Which of the two Hopf bifurcations, Η = ΗH1 or Η = ΗH2, takes place first and, hence,
destabilizes the cw solution depends on the order of magnitude of the time delay tD. We
discuss three different situations: small, moderate, and large delays.

1. If tD � Γ-1/2, then j � 1 and the cw solution (4.9) and (4.10) can only be destabil-
ized through the Hopf bifurcation at Η = ΗH1. In this limit, however, the phase dis-
persions Jn j may become non negligible, which makes the validity of formula (4.11)
questionable.

2. If tD ~ Γ-1/2, i.e., the time delay is comparable to the relaxation oscillations period. The
value of j corresponding to the lowest bifurcation threshold ΗH2 is well approximated

by I2ΓP̄M1/2
tD. Then the relative position of ΗH1 and ΗH2 can be controlled through j

by changing the external cavity length on the centimeter scale.

3. Finally, if tD
�
ΠΓ-1 I2P̄ + 1M-1

there exists at least one solution WH2 of (4.13) such
that ΗH2 < ΗH1. Therefore, it is always the in-phase Hopf bifurcation (4.12) that
destabilizes the in-phase cw solution. Moreover, our numerical simulations indicate
that for large delays the in-phase synchronized self-pulsing solution emerging at Η =
ΗH2 is stable in a wide domain above the desynchronization threshold given by Η =
ΗH1. In this sense, the antiphase instability is bypassed and in-phase synchronization is
preserved by the in-phase Hopf bifurcation at Η = ΗH2.

Figure 4.6 illustrates the order of appearence of the Hopf bifurcations Η = ΗH1 and
Η = ΗH2 as a function of the time delay. From (4.11) and (4.12), ΗH1 and ΗH2 have minima

ΗH1 = Γ I1 + 2P̄M /01 + Α2 and ΗH2 = ΗH1/ (1 - cosj) at cos IΩtD + cot-1 ΑM = 1 . These
minima are shown as functions of the external cavity length L. One can see that for L �
20 cm the order of appearance of the two Hopf bifurcations, Η = ΗH1 and Η = ΗH2, can
be controlled through L. For larger L, the in-phase Hopf bifurcation always precedes the
antiphase Hopf bifurcation.

The linear stability analysis of the cw states is summarized in Figs. 4.3 and 4.4 for values
of the external cavity length in the vicinity of L > 13.7 cm and L > 44 cm, respectively.
In these figures L varies on the scale of the optical wavelength which we fix at Λ = 1 Μm.
The grey areas labelled I and II are the stability domains of different cw in-phase solutions,
each corresponding to a certain ECM. In Fig. 4.3, it is the Hopf bifurcation to antiphase self-
pulsing solutions at Η = ΗH1 < ΗH2, which takes place first and destabilizes the in-phase cw
state. In Fig. 4.4, corresponding to a larger value of feedback delay, the first Hopf bifurcation
leading to inphase self-pulsing regime takes place at Η = ΗH2 < ΗH1.

Having determined the critical coupling strengths ΗH1 and ΗH2, we can complete the
conditions to achieve synchronization in the cw operation:

Ηc < Η < ΗH1, ΗH2, (4.14)

where Ηc is defined in (4.8). Qualitatively, this imposes that the dispersion of the natural
frequencies G be smaller than the relaxation rate of the carrier density Γ.
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Figure 4.6: Relative positions of the two Hopf bifurcations. Χ = 0, Α = 5, P̄ = 1.5, Γ = 10-3.

The dashed line H1 shows the minimal coupling strength necessary to reach the degenerate Hopf

bifurcation Η = ΗH1. It corresponds to the minima of the curves H1 shown in Figs 4.3 and 4.4. The

solid line H2 represents the minimal coupling strength corresponding to the in-phase Hopf bifurcation

Η = ΗH2, calculated using Eq. (4.12).

Finally we conclude that according to the linear stability analysis, a large time delay favors
in-phase synchronization because it reduces the size of the instability domains (4.5) of the cw
in-phase state and favors the in-phase Hopf bifurcation at Η = ΗH2 against the antiphase
bifurcation at Η = ΗH1.

4.5 Self-pulsing solutions

We now construct the time periodic solutions that bifurcate from the in-phase cw solution
(4.9) and (4.10). For the sake of mathematical convenience, we assume that Α � 1. Using
this approximation, it is possible to describe analytically not only small amplitude self-pulsing
solutions of (4.1) and (4.2) near Hopf bifurcation thresholds but finite amplitude periodic
intensity solutions as well. Although in practice Α > 5, the agrement with numerical results
is quite remarkable. Working in the limit Γ, Η, Χ,Α-1 � 1, we seek a solution of Eqs. (4.1)
and (4.2) of the following form

E j (t) =
1

Pj K1 + y j

Α
O exp IiF jM , (4.15)

Z j (t) = W j
x j

Α
, W j =

1
2ΓPj. (4.16)
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Following the procedure described in Appendix 4.B, we obtain the following set of N coupled
third order phase equations

1

W
2
j
Cd3F j

dt3
+ Γ I2Pj + 1M d2F j

dt2 G + dF j

dt
= Ω j -

ΑΗ

N

Nâ
n=1

sin AJ jn + F j - Fn (t - tD)E
-
ΑΧ

2
â

q=-1,1

sin IΖ + F j - F j+qM . (4.17)

These equations generalize the phase equations (4.3) by the presence of higher order deriv-
atives of F j. We note that the equations recently derived in [29] for a multimode single
SCL with external feedback have a structure that is similar to (4.17). One can also note an
analogy between (4.17) and the extended Kuramoto model, studied in [30, 31], in which a
second derivative of the phase variable was included in order to take into account “inertial”
effects. The authors of Ref. [30] found, in the limit N ® ¥, that inertia embarrasses the in-
phase synchronization. In our case inertial terms proportional to higher order derivatives in
(4.17) are responsible for the appearance of self-pulsing instabilities at Η = ΗH1 and Η = ΗH2.
As already mentioned, the first of these two instabilities leads to the solutions with partially
broken in-phase synchrony.

We derive amplitude equations by following the two-time scale perturbation approach
proposed in [32]. To this end, we introduce the two time variables s and Τ and their delays
by I s, sD M = W̄ ´ I t, tD M , I Τ, ΤD M = Γ IP̄ + 1/2M ´ I t, tD M , (4.18)

where W̄ =
1

2ΓP̄ is the average natural relaxation frequency over the laser array. Coupling
parameters and frequencies are rescaled as

I K, X, ∆Ω j, ∆W j M = 2

Γ I2P̄ + 1M ´ I ΑΗ, ΑΧ, Ω j - Ω̄, W j - W̄ M .
In the leading order approximation, one obtains

x j = -Im Az j (Τ) e
isE , y j = Re Az j (Τ) e

isE , F j = Ω̄t + Φ j (Τ) + Re Az j (Τ) e
isE . (4.19)

This solution is represented in Fig. 4.7 for two laser elements. The motion of each electric
phasor contains a monotonic part given by Ω̄t + Φ j (Τ) on which an oscillatory component
z j (Τ) eis is superimposed. The former is related to the optical motion whereas the latter de-
scribes the relaxation oscillations. The question of synchronization concerns the two motions
simultaneously. To this end, we derive (see Appendix 4.B) the slow time evolution equations
for Φ j (Τ) and z j (Τ):

dΦ j

dΤ
= ∆Ω j -

K
N

Nâ
n=1

sin IΦ jnM J0 IÄÄÄÄz jn
ÄÄÄÄM - X

2
â

q= j-1, j+1

sin IΞ jqM J0 IÄÄÄÄw jq
ÄÄÄÄM ,

dz j

dΤ
= I-1 + i∆W jM z j +

K
N

Nâ
n=1

cos IΦ jnM z jn
J1 IÄÄÄÄz jn

ÄÄÄÄMÄÄÄÄz jn
ÄÄÄÄ +

X
2
â

q= j-1, j+1

cos IΞ jqMw jq
J1 IÄÄÄÄw jq

ÄÄÄÄMÄÄÄÄw jq
ÄÄÄÄ ,

(4.20)
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Figure 4.7: Periodic solutions of (4.1) and (4.2). The real and imaginary parts of the electric field is

plotted for two lasers in a frame rotating at the velocity Ω̄t. The two traces are radially shifted for

clarity. The numbers are temporal reference points. (a) Both the optical and relaxation oscillations

are in-phased: Φ1 = Φ2, z1 = z2. (b) Optical oscillations are in-phase, relaxation oscillations are

antiphased: Φ1 = Φ2, z1 = -z2. Note that the two traces can represent clusters of lasers as well.

In these equations, JΝ (x) are Bessel functions of the first kind and

Φ jn = Ω̄tD + J jn + Φ j - Φn (Τ - ΤD) , (4.21)

z jn = z j - zn (Τ - ΤD) exp (-isD) , (4.22)

Ξ jq = Ζ + Φ j - Φq, w jq = z j - zq. (4.23)

We use the amplitude Eqs. (4.20) in order to describe analytically periodic self-pulsing re-
gimes in the array. Specifically, the steady state z1 = ¼ = zN = 0 of Eqs. (4.20) corresponds
to the cw solutions of the original Lang-Kobayashi equations, whereas the states with time
independent

ÄÄÄÄz j
ÄÄÄÄ ¹ 0 correspond to periodic self-pulsing solutions of (4.1) and (4.2).

Although, for the sake of generality, local coupling and dispersion in natural frequencies
are included in (4.20), below we focus on the synchronization of globally coupled oscillators
with identical parameters in the absence of local coupling: X, ∆W j, ∆Ω j, J jn = 0.

4.5.1 In-phase periodic solution

The in-phase periodic solution of (4.1) and (4.2) that bifurcates at Η = ΗH2 is obtained by
substituting Φ j = Φn = DΩΤ and z j (Τ) = zn (Τ) = Ρ exp (iDWΤ) with a time independent
Ρ in (4.20). This solution is illustrated in Fig. 4.7 for two lasers. The amplitude Ρ of the
oscillations is then related to the rescaled coupling parameter K by the implicit relation

K-1 =
Ρ̃J1 (Ρ̃)

2Ρ2
cosΨ, Ρ̃ = 2Ρ sin (j/2) (4.24)

Ψ = Ω̄tD + DΩΤD, j = W̄tD + DWΤD, (4.25)

where the frequency shifts DΩ and DW obey the transcendental equations

DΩ = -2
Ρ2J0 (Ρ̃)

Ρ̃J1 (Ρ̃)
tanΨ, DW = cot Jj

2
N . (4.26)
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Eq. (4.26) for the correction to the relaxation oscillation frequency DW is in fact equivalent to
Eq. (4.13). The value of j can be controlled by varying the external cavity length on the cm
scale. The stability of the solution (4.24)-(4.26) can be determined by linearizing Eqs. (4.20)
and applying discrete Fourier transformation of variables as in (4.33). This yields stability
conditions for perturbations transverse to the synchronization manifold.

If ΗH2 < ΗH1, that is if cosj < 0, the in-phase periodic solution is stable in the vicinity of
the self-pulsing threshold. However, it can be destabilized by a secondary bifurcation KΦ. The
condition K = KΦ defines a (N - 1)-fold degenerate steady state bifurcation of Eqs. (4.20)
which corresponds to a secondary bifurcation of the in-phase periodic solutions of Eqs. (4.1)
and (4.2). This bifurcation leads to a gradual desynchronization of the optical phases Φ j. To
demonstrate this point, we perturb the in-phase solution (4.24)-(4.26) as Φ j = DΩΤ + ∆Φ j

and z j = Ρ exp (iDWΤ) + ∆z j. In the particular case cosΨ = 1, the linearized equations for
∆Φ j decouple from those for ∆z j

d∆Φ j

dΤ
= -KJ0 (Ρ̃)â

n

∆Φ j - ∆Φn (Τ - ΤD) . (4.27)

According to (4.27) the secondary instability K = KΦ takes place when the quantity J0 (Ρ̃)
changes from positive to negative with increasing Ρ.

If ΗH2 > ΗH1, the cw regime is already unstable at the Hopf bifurcation K = KH2 and the
in-phase periodic solution emerging from this point is, therefore, also unstable. However, the
laser array can be stabilized in the in-phase state through a (N - 1)-fold degenerate Hopf bi-
furcation of Eqs. (4.20) at K = KΘ. It corresponds to a secondary antiphase Hopf bifurcation
of the in-phase self-pulsing solution in the original laser equations. Increasing further K, the
laser array again looses its in-phase synchronization at K = KΦ > KΘ. This situation is illus-
trated by the bifurcation diagram shown in Fig. 4.5 together with Fig. 4.8 [35]. In this figure,

Figure 4.8: Intensities for the in-phase self-pulsing branch I-P of Fig. 4.5. Η = 1.12 10-3.

the branches of stable self-pulsing solutions bifurcating from the in-phase cw state are shown
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as functions of the coupling strength. It is seen that in-phase and antiphase self-pulsing re-
gimes can coexist in a broad range of coupling strengths. The bifurcation thresholds K = KΘ
and K = KΦ are shown in Fig. 4.9 as functions of ΩtD.

Figure 4.9: Bifurcation loci of the in-phase self-pulsing solution labelled I-P in Fig. 4a. The curve ΗH2

corresponds to the Hopf bifurcation from the already unstable cw in-phase solution. The in-phase

self-pulsing solution exists above this curve and is stable in the grey region delimited by the curves

ΗΘ º Γ IP̄ + 1/2M Α-1KΘ and ΗΦ º Γ IP̄ + 1/2MΑ-1KΦ.

The bifurcation diagram shown in Fig. 4.10. corresponds to a large value of the delay,
ΤD = 1.83, for which the in-phase Hopf bifurcation always precedes the antiphase Hopf
bifurcation. As shown in the figure, the stable in-phase self-pulsing solution emerging at
Η = ΗH2 undergoes a secondary Hopf bifurcation to in-phase synchronized solution with
quasiperiodic laser intensities. Since this secondary bifurcation takes place before the desyn-
chronizing bifurcation at K = KΦ, in-phase synchronization is preserved in the quasiperiodic
self-pulsing regime. This eventually leads to an in-phase synchronized chaotic regime with
increasing Η.

4.5.2 Antiphase periodic solutions

Let us now study the solutions that emerge from the Hopf point Η = ΗH1. From the linear
stability analysis, we know that the antiphase self-pulsing solutions can destabilize the cw
in-phase state only if ΤD is sufficiently small. Otherwise, ΗH2 < ΗH1 and the in-phase periodic
solution emerges first. Let us assume that ΤD � 1 and, therefore, neglect the delay ΤD in
(4.21). An example of periodic solution where the optical phases Φ j are locked in-phase but
the relaxation oscillations are in antiphase is given in Fig. 4.7 for two lasers. Substituting
Φ j = DΩΤ and z j = Ρ exp (iDWΤ + 2i jkΠ/N) in Eqs. (4.20), we get the following relation
between the amplitude Ρ of the antiphase selfpulsing solution with the discrete wave number
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Figure 4.10: Numerically calculated bifurcation diagram for Eqs. (4.1) and (4.2) with N = 4,

mod (Ω̄tD, 2Π) = 0.14 and tD = 917, which corresponds to W̄tD = 50.2 and ΤD = 1.83. Other

parameters are the same as in Fig 2. The cw in-phase state undergoes the Hopf bifurcation leading

to stable in-phase self-pulsing solution. With the increase of the coupling strength Η this solution

bifurcates into a quasiperiodic in-phase synchronized regime via a secondary Hopf bifurcation. The

latter regime bifurcates to a chaotic in-phase synchronized regime as Η is further increased. Broken

lines show analytical results obtained using Eqs. (4.24)-(4.26).

k and the rescaled coupling parameter K

K-1 =
cos (ΩtD)

N

Nâ
n=1

Ρn,kJ1 IΡn,kM
2Ρ2

, (4.28)

where

Ρn,k = 2Ρ sin KW̄tD

2
-

nkΠ
N
O .

In the bifurcation equation (4.28), k can take any integer value between 1 and N - 1, each
corresponding to a different antiphase periodic solution. Letting Ρ ® 0 in (4.28), we obtain
K ® KH1 = 2/ cos (ΩtD). All these solutions have the same scaling near K = KH1, namely

Ρ =
0

8DK/3 + O IDK3/2M with DK = K/KH1 - 1, except the solution corresponding to
k = N/2 with N even, which scales as

Ρ =

2
8DK

3 + cos I2W̄tDM + O IDK3/2M . (4.29)

The self-pulsing antiphase solution with the wave number k = N/2 is often observed in
numerical simulations when N is even in Eqs. (4.1) and (4.2). For this wave number, two
clusters form in the array. Within each cluster, individual laser intensities oscillate in-phase
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while SCL’s pertaining to different clusters differ by a phase shift of Π in their relaxation
oscillations. Such a situation is depicted in Fig. 4.7. The denominator in (4.29) indicates
that the growth rate of the amplitude of this self-pulsing state with DK is maximum for
cos I2W̄tDM = -1. Such a resonance condition with respect to the frequency 2W̄ is connected
to the fact that the total reflected field oscillates at twice the oscillation frequency of the
individual lasers if the laser array is in the k = N/2 state. Indeed, let us reconstruct Etot =ÚN

j=1 E j using (4.15), (4.19), and Φ j = DΩΤ, z j = (-1) j Ρ exp (iDWΤ),

Etot � cos IΡ cos IW̄t + DWΤMM + O (Ρ/Α)
> J0 (Ρ) - 2J2 (Ρ) cos I2W̄t + 2DWΤM .

With the increase of the coupling strength a symmetry breaking instability of the k = N/2
solution takes place by which the two antiphase clusters acquire different optical phases.
In order to demonstrate this phenomenon, we substitute into (4.20) a perturbed antiphase
solution in the form Φ j = DΩΤ + (-1) j ∆Φ, z j = (-1) j Ρ exp (iDWΤ) + (-1) j ∆z and derive
linearized equations for ∆Φ and ∆z. In the particular case cos (ΩtD) = 1, the equation for ∆Φ
does not depend on ∆z and is

d∆Φ
dΤ
= -KJ0 I2Ρ cos IW̄tD/2MM ∆Φ.

Accordingly, the symmetry breaking bifurcation arises when J0 I2Ρ cos IW̄tD/2MM becomes
negative with increasing Ρ. The total field for the solution with the optical phase difference
∆Φ of the antiphase clusters can be written as

Etot � cos IΡ cos IW̄t + DWΤM + ∆ΦM + O (Ρ/Α)
Note that the trigonometric expression above possesses two distinct minima at cos (∆Φ ± Ρ) .
Similar feature is exhibited by the antiphase self-pulsing regime bifurcating at Η = 1.49 in
Fig. 4.5.

Two antiphase clusters can appear in the array if N is odd, except that one laser does not
belong to any cluster. The first order amplitude equations (4.20) predict that this laser is
in steady state. Higher order effects lead to corrections in the form of very small amplitude
oscillations. This behavior is illustrated in Fig. 4.11 and corresponds to the branch of solution
labelled A-P in Fig. 4.5. In Fig. 4.11, two antiphase clusters are formed by the lasers 1,2 and
4,5, whereas laser 3 is almost cw. The self-pulsing solution with two antiphase clusters and
a single cw laser can be described analytically with the help of Eqs. (4.20). Looking for a
solution of the form z1 = 0, z j>1 = (-1) j Ρ exp (iDWΤ), Φ j>1 = DΩΤ, Φ1 = DΩΤ - ∆Φ and
using the self-consistency condition dΦ1/dΤ = dΦ j>1/dΤ we get a transcendental equation
for the optical phase lag ∆Φ:

(N - 2) cos ∆Φ - N cotΩtD sin ∆Φ =
(N - 1) [J0 (Ρ+) + J0 (Ρ-)] - 2

2J0 (Ρ)
(4.30)

where Ρ+ = 2Ρ cos IW̄tD/2M and Ρ- = 2Ρ sin IW̄tD/2M. The amplitude Ρ and the coupling
parameter K are related by

K-1 = cos (ΩtD + ∆Φ)
J1 (Ρ)

NΡ
+

N - 1
N

cos (ΩtD)
Ρ-J1 (Ρ-) + Ρ+J1 (Ρ+)

4Ρ2
(4.31)
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Figure 4.11: Laser intensities for the antiphase self-pulsing branch A-P of Fig. 4.5. Η = 1.12 10-3.

The intensity oscillations are locally extinguished in the array

Due to the permutation symmetry of the problem with Χ = 0, the laser indices can be
rearranged such that the (N - 1) /2 first lasers belong to the first cluster and the (N - 1) /2
last lasers form the second cluster. The cw laser is thus at the center and can be viewed
as a transition point between the two clusters where a sudden relaxation phase shift of Π
takes place. Numerical simulations with nonzero but small Χ and the boundary conditions
E0 = EN+1 = 0 lead to such a situation. This state of synchronization can therefore be viewed
as a discrete analog of a domain wall.

4.6 Conclusion

We have studied the synchronization properties of a SCL array subjected to a delayed global
coupling through optical feedback. If the lasers are identical and the coupling strength is
below the self-pulsing threshold, the array dynamics can be modelled with Kuramoto phase
equations (4.3) that include a time delay. Depending on the optical dephasing of the feed-
back field, the coupling induces either in-phase or antiphase cw synchronization. Increasing
the time delay, the stability domains expand for the in-phase cw states, whereas they shrink
and tend to disappear for the antiphase cw states (compare Figs. 4.3 and 4.4). In the more
realistic situation where there is a distribution of the SCL’s optical frequencies, the coupling
strength must exceed some critical value Ηc in order to establish synchronization. An estima-
tion of Ηc, given by (4.8), can be obtained from the Kuramoto model (4.3) in the limit of an
infinitely large array [18, 19]. We note, however, that a more complete description of the laser
synchronization properties can be expected from our extended model (4.17) because it takes
into account weakly damped relaxation oscillations. These oscillations are typical of solid
state and semiconductor lasers. Though damped, they could degrade the synchronization
properties of the array. Recently, it was shown that a second order derivative term included
into the Kuramoto phase equations can increase the in-phase synchronization threshold [30].
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As the coupling strength exceeds the Hopf bifurcation threshold, the laser intensities
display undamped oscillations. They exhibit either in-phase or antiphase pulsations with
a frequency close to the relaxation oscillations frequency W of the solitary SCL. Antiphase
dynamics is a common feature typical of many other systems consisting of globally coupled
identical elements [11, 33, 34]. A Hopf bifurcation leading to antiphase dynamics exists even
in the absence of time delay. This bifurcation is highly degenerate and give rise to various
type of antiphase relaxation oscillation in the array output. Among these, we have described
a particular antiphase state featuring extinction of the sustained relaxation oscillations of a
single laser. The existence of such stable regime was verified by means of numerical simula-
tions of the original laser equations (4.1) and (4.2). If a weak local coupling is added to the
system the cw laser becomes a discrete analog of a domain wall.

The in-phase self-pulsing instability can appear only ifWtD = O (1). For moderate delays,
i.e., WtD = O (1), which of the two selfpulsing bifurcations destabilize the cw in-phase state
depends on the relaxation dephasing between the emitted and reinjected fields. In this case,
we found that even if the antiphase Hopf bifurcation takes place first, the in-phase self-pulsing
solution can become stable with the increase of the coupling strength as it is illustrated by

Fig. 4.5. On the other hand, for large delays verifying tD
�
ΠΓ-1 I2P̄ + 1M-1

, the in-phase
bifurcation always precedes the antiphase one, thus preserving in-phase synchrony in the
self-pulsing regime.

Above the selfpulsing threshold, the phase equations (4.3) are no more valid. Therefore,
in order to describe the self-pulsing dynamics, we derived an extended version of the Kur-
amoto model with higher order derivative terms (4.17). Using a perturbation method, we
reduced Eqs. (4.17) to the amplitude equations (4.20). This allowed us to describe analyt-
ically various self-pulsing solutions emerging from the Hopf bifurcations and discuss their
stability. In particular, we have studied secondary antiphase bifurcations of the in-phase
self-pulsing solution. For moderate delays, WtD = O (1), these bifurcations can destroy the
synchrony of the in-phase self-pulsing regime and, hence, decrease the amplitude of the total
field ÚN

j=1 E j. However, if tD ~ Γ-1, they are bypassed by another secondary bifurcation
that leads to in-phase synchronized output with quasiperiodic laser intensities. Numerically,
in-phase synchrony is then seen to persists even in the chaotic regimes.

Thus we can conclude that the effect of time delay is essentially to increase the complex-
ity of the array dynamics by producing new branches of in-phase cw, periodic, quasiperiodic
or chaotic solutions. The symmetry of the global coupling imposes that these solutions lie
within the in-phase synchronization manifold where all the elements of the array behaves
identically. For large delays, the bifurcations by which in-phase solutions are created pre-
cede antiphase instabilities. In this way, the phase trajectory may be kept in the in-phase
synchronization manifold.
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Appendix to Chapter 4

4.A Linear stability analysis with nonzero local coupling

4.A.1 In-phase cw state

The in-phase solutions of (4.3) with nonzero value of Χ are given by Φ j = Φk = Ωt with the
common frequency Ω obeying the transcendental equation

Ω = Ω̄ -
0

1 + Α2 AΗ sin IΩtD - cot-1 ΑM + Χ sin IΖ - cot-1 ΑME . (4.32)

Below the self-pulsing threshold, the linear stability analysis of the in-phase cw state can be
performed by substituting

Φ j = Ωt + ¶
Nâ

k=1

∆Φke
2i jk/N , (4.33)

into (4.3) and collecting O (¶) terms. The linearized equations for ∆Φk yield the stability
conditions

Η cos IΩtD - cot-1 ΑM + 2Χ cos IΖ - cot-1 ΑM sin2 KkΠ
N
O > 0, (4.34)

where k = 1,¼, N - 1. The effect of the local coupling on the stability of the in-phase
cw regimes depends on the relative phase between the global and local couplings. If the
two cosine functions in (4.34) have the same sign, local coupling almost does not change
the stability domain of the cw-inphase solution for large N. Otherwise this stability domain
decreases with increasing local coupling strength Χ. This was also observed in [26].

Letting Χ ® 0, the bifurcations defined by (4.34) merge into a single (N - 1)-fold de-
generate bifurcation. Then, solving successively (4.34) and (4.4), one finds the instability
domains of the in-phase cw state in the (Ω̄tD,Η) parameter plane given by

Π

2
+ ΗtD

0
1 + Α2 £ Ω̄tD - cot-1 Α - 2nΠ £

3Π
2
- ΗtD

0
1 + Α2, (4.35)

Besides the desynchronization boundaries (4.35), a linear stability analysis of (4.9) and
(4.10) reveals the existence of two different types of Hopf bifurcations leading to self-pulsing
solutions. The bifurcations of the first type are associated with perturbations transverse to
the synchronization manifold {E1 = ¼ = EN , Z1 = ¼ = ZN}. In the limit Η, Χ, Γ � 1,
these bifurcations are defined by the condition

Η = ΗH1(k) º sec IΩtD + cot-1 ΑM CΓ I1 + 2P̄M0
1 + Α2

- 2Χ sin2 KΠk
N
O cos IΖ + cot-1 ΑMG , (4.36)
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with k = 1,¼, N - 1. The associated relaxation oscillation frequency is I2ΓP̄M1/2
. If

cos IΖ + cot-1 ΑM < 0,

the lowest bifurcation threshold (4.11) corresponds to k = 1. In the limit N ® ¥ it coincides
with the threshold in the absence of local coupling. On the contrary, if

cos IΖ + cot-1 ΑM > 0,

the self-pulsing threshold is lowered by the local coupling, even for large N. As Χ ® 0 the
bifurcation given by (4.36) merge into a single (N - 1)-fold Hopf bifurcation.

4.A.2 Anti-phase cw state

The stability of the state (4.6) can be assessed using a discrete Fourier transformation similar
to (4.33). This gives

Χ cos IΖ - cot-1 ΑM cos K2MΠ
N
O sin2 KkΠ

N
O > 0, (4.37)

with k = 1,¼, N, k ¹ M, N -M and

Η cos IΩtD - cot-1 ΑM - 4Χ cos IΖ - cot-1 ΑM cos K2MΠ
N
O sin2 KMΠ

N
O < 0, (4.38)

where Ω verifies the transcendental equation

Ω = Ω̄ -
0

1 + Α2 CΗ
2

sin IΩtD - cot-1 ΑM + 2Χ sin2 KMΠ
N
O sin IΖ - cot-1 ΑMG . (4.39)

The stability boundaries defined by (4.37) and (4.38) correspond to Hopf bifurcations with
the frequency Ω - Ω̄. According to the stability condition (4.37), the local coupling selects
the antiphase states with M such that cos IΖ - cot-1 ΑM cos (2MΠ/N) > 0. It then follows
from (4.38) that the stability domain of these states increases with Χ.

Letting Χ ® 0 in (4.37), one obtains N - 2 zero eigenvalues. In addition, there is a zero
eigenvalue associated with the invariance of (4.3) under the global phase shift Φ j ® Φ j+const.
Finally, combining expressions (4.38) and (4.39), we find the triangular regions (4.7) in the
(Ω̄tD, Η) parameter space where the antiphase state is neutrally stable.

4.B Derivation of the generalized phase equations

Substituting (4.15) and (4.16) into (4.1) and (4.2) yields

dx j

dt
= -Γ I1 + 2PjM x j - W jy j + O I0Γ/ΑM , (4.40)

dy j

dt
= W jx j +

ΑΗ

N

Nâ
n=1

sin AJ jn + F j - Fn (t - tD)E + ΑΧ2 â
p= j-1, j+1

sin IΖ + F j - FpM
+O I0Γ/Α, Η, Χ,ΑΗ∆Pj,ΑΧ∆PjM , (4.41)

dF j

dt
= Ω j + W jx j + O (Η, Χ) . (4.42)
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where ∆Pj = Pj/ P̄-1. In these equations, we keep terms of order ΑΗ, ΑΧ, and Γ because they
are of the same order at the bifurcation points (4.11) and (4.12). Differentiating Eq. (4.42)
twice with respect to time and using (4.40) and (4.41), one obtains Eqs. (4.17).

Next, we introduce the two time scales in (4.18) and expand the dependent variables in
(4.40)-(4.42) as

x j = x
(0)
j (s, Τ) +

0
Γx
(1)
j (s, Τ) +¼,

y j = y
(0)
j (s, Τ) +

0
Γy
(1)
j (s, Τ) + ¼,

F j = Ω̄t + F
(0)
j (s, Τ) +

0
ΓF
(1)
j (s, Τ) +¼. (4.43)

Collecting O IΓ0M terms, we get

K ¶
¶s
- LO æçççççççç

è

x
(0)
j

y
(0)
j

F
(0)
j

ö÷÷÷÷÷÷÷÷
ø

= 0, L =
æçççççç
è

0 -1 0
1 0 0
1 0 0

ö÷÷÷÷÷÷
ø

. (4.44)

This equation has the solution

x
(0)
j = -Im Az j (Τ) e

isE , y
(0)
j = Re Az j (Τ) e

isE , F
(0)
j = Φ j (Τ) + Re Az j (Τ) e

isE . (4.45)

Next, equating the terms of order Γ1/2, we obtain

K ¶
¶s
-LO æçççççççç

è

x
(1)
j

y
(1)
j

F
(1)
j

ö÷÷÷÷÷÷÷÷
ø

=
P̄ + 1/20

2P̄

Ó
B. (4.46)

The quantity
Ó
B in the r.h.s. of (4.46) is computed using the following properties of Bessel

functions:

sin BΩ̄tD + J jn + F
(0)
j - F(0)n (s - sD)F = J0 IÄÄÄÄz jn

ÄÄÄÄM sinΦ jn+
J1 IÄÄÄÄz jn

ÄÄÄÄMÄÄÄÄz jn
ÄÄÄÄ Iz jneis + c.c.M cosΦ jn+h.h.,

and

sin JΖ + F(0)j - F(0)q N = J0 IÄÄÄÄw jq
ÄÄÄÄM sin Ξ jq +

J1 IÄÄÄÄw jq
ÄÄÄÄMÄÄÄÄw jq
ÄÄÄÄ Iw jqeis + c.c.M cos Ξ jq + h.h.,

where c.c. and h.h. means “complex conjugate” and “higher harmonics”, respectively. This
yields

Ó
B = -

¶

¶Τ

æçççççççç
è

x
(0)
j

y
(0)
j

F
(0)
j

ö÷÷÷÷÷÷÷÷
ø

+

æççççççç
è

-2x
(0)
j - ∆W jy

(0)
j

∆W jx
(0)
j

∆Ω j

ö÷÷÷÷÷÷÷
ø

+
æçççççç
è

0
1
0

ö÷÷÷÷÷÷
ø

ìï
íï
î

K
N
â

n

AsinΦ jnJ0 IÄÄÄÄz jn
ÄÄÄÄM

+ cosΦ jn
J1 IÄÄÄÄz jn

ÄÄÄÄMÄÄÄÄz jn
ÄÄÄÄ Iz jneis + c.c.ME + X

2
â

q= j-1, j+1

Asin Ξ jqJ0 IÄÄÄÄw jq
ÄÄÄÄM

+ cos Ξ jq
J1 IÄÄÄÄw jq

ÄÄÄÄMÄÄÄÄw jq
ÄÄÄÄ Iw jqeis + c.c.ME? + h.h.
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The existence of non trivial solutions of Eq. (4.46) implies the orthogonality conditions or
solvability conditions

à 2Π

0

Óv0 ×
Ó
Bds = 0, à 2Π

0

Óv± × ÓBe±isds = 0,

where
Óv0 = (0, 1,-1) and

Óv± = (¡i, 1, 0) are the left eigenvectors of L associated with the
eigenvalues 0 and ±i, respectively. These solvability conditions lead to Eqs. (4.20).

The error in Eqs. (4.20) related to the assumption Α � 1 can be estimated near the Hopf
bifurcation points. To this end, we introduce a small parameter ¶ by

K = KH + ¶
2K2,

and seek periodic solution of the form

f j = Re I¶ f j,1eis +¼M , f j = x j, y j,F j - Ω̄t.

This produces a set of linear differential equations at each order in ¶. At third order, the solv-
ability condition yields the corrected version of Eq. (4.20) in the vicinity of the bifurcation
point:

dz j

dΤ
= -

i
0

2P̄

12Α20Γ I2P̄ + 1Mz j
ÄÄÄÄz j
ÄÄÄÄ2

+
KH cosΨ

16N
â

n

z jn K8K - KH

KH
-
ÄÄÄÄz jn
ÄÄÄÄ2O + O IΑ-1M .

The principal correction to Eq. (4.20) close to the bifurcation point is thus O IΑ-2Γ-1/2M.
Since it is imaginary, it only affects the relaxation frequency and not the amplitude of the os-
cillations. The next corrections are only O IΑ-1M, which explains the good agreement between
numerical and theoretical curves in Figs. 4.5 and 4.10.
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Chapter 5

Atomic interference in a microchip laser

5.1 Introduction

Much attention has been devoted in the last decade to atomic interference as a mechanism
mediating light-matter interaction [1, 2, 3, 4, 5]. This resulted from a shift of emphasis from
the two-level atomic system to a three-level atomic system with at least two fields or lasing
cavity modes in a L or V scheme. Both founding papers [6, 7] exploited atomic interference
to prove that there is a domain in which gain and even lasing could be achieved without
population inversion, as clearly explained in [8]. Starting from these premisses, the work that
followed focused on inversionless atomic systems, adding atomic levels and/or driving and
probe fields to the original models.

In this chapter, we consider another situation connected to the same family of processes:
atomic interference in a laser with population inversion. Experimental results have been re-
ported recently on the lasing properties of the LiNdP4O12 (LNP in short) crystal prepared
in the form of a microchip. First, it has been shown numerically and experimentally that
this laser displays an unusual input-output power characteristics (the quadratic-to-quartic, or
Q2Q, transition[9]) followed by a self-pulsing instability [10]. It was also found that beyond
the Q2Q transition, the number of lasing modes decreases and the laser eventually becomes
single mode for high pumping rates (typically seven times above the lasing threshold) [11].
Spectroscopic data indicate that these multimode regimes are generated by transitions that
connect N levels of the 4I11/2 manifold of neodymium to a single level of the more energetic
4F3/2 manifold. Each transition is in general single mode. Thus, the two-mode regime is asso-
ciated with the usual L scheme. The regimes with more than two branches emanating from
the upper level will be referred to as n-L schemes. The dynamics of an LNP laser operating
in this multimode regime is by no means simple. First, it has been shown experimentally and
numerically that there is a self-pulsing threshold corresponding to the instability of a low-
frequency relaxation oscillation. This indicates that the usual rate equations are inadequate
to describe this regime since they predict the complete absence of instability. Second, the
selfpulsing regime is characterized by a strong manifestation of antiphase dynamics resulting
in a total intensity which is practically constant despite large amplitude oscillations of the
modal intensities. In a recent publication [10], the modelisation of this laser has been dis-
cussed for three-mode operation. Based on numerical evidence, it appears that a sufficient
description is obtained if the optical atomic coherences are adiabatically eliminated while re-
taining the low frequency atomic coherence among the sublevels of the 4I11/2 manifold, in
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addition to the modal intensities and the atomic population dynamics. A further simpli-
fication derives from the fact that the levels in 4I11/2 are short-lived compared to those in
4F3/2 [12]. Hence the population inversions between these two manifolds are all given essen-
tially by the population in 4F3/2. Lasing without population inversion is therefore excluded
in this system. We do not mean, however, that the populations in the manifold 4I11/2 vanish;
otherwise, there could be no atomic coherence in it. Another consequence of this fact is that
the population inversion cannot be negative. Hence, spatial variations of the pump profile
can not be the cause of sustained relaxation oscillations, through the mechanism described in
Chapter II. Starting from these conclusions, this chapter presents a theoretical study of the
n-L scheme that is applicable to the LNP microchip laser.

In the experimental setup [9], the laser cavity is end-pumped by a laser diode. In contrast
with [10], we do not attempt to discuss the influence of the penetration depth of the pump
beam. Rather, we concentrate on the role of the atomic coherence between the low levels of
the system on the laser dynamics.

This chapter is organized as follows. In Sec. 5.2, we introduce the n-L model. We derive
the steady states and discuss their stability for an arbitrary number of atomic transitions. In
order to go one step further in the analysis, in Sec. 5.3, we focus our attention to the case
of two transitions. With this simplification and the assumption that the two atomic lines
have the same strength, we can explicitly analyze the self-pulsing solution. We draw our
conclusions in the next section.

These results were published in [13].

5.2 Derivation of the model

We consider an atomic system having N optical transitions between an energy level |0\ and
a set of closely spaced lower energy levels ÄÄÄp\ with p = 1, ..., N, as shown in Fig. 5.1. From
the above discussion, we assume that the low levels remain almost unpopulated so that we
approximate the difference Ρ00 - Ρpp by Ρ00, where Ρ is the density operator. In addition,
we assume that the Fabry-Perot cavity, of length L, supports a resonant field mode with each
optical transition 0 W p. We thus write the electric field as

E (z, t) =
Nâ

p=1

IEp (t) e
iΩpt + c.c.M sin IkpzM . (5.1)

where Ωp is the atomic frequency between levels |0\ and ÄÄÄp\, and kp is the associated wave
number. The relaxation rates of Ρpq, Ρp0, and Ρ00 are noted Gpq, Γ^, and Γü, respectively, while
the cavity damping rate is noted Gc. A lower bound of Gpq is given by the population decay
rates in levels ÄÄÄp\ and ÄÄÄq\. According to our hypothesis, they are short-lived compared to level

|0\, so we have Gpq � Γü. Spectroscopic data exist for the 4I11/2 manifold of neodymium in
glassy materials [14]. The decay rates of these levels are found to be comparable to the cavity
damping rate Gc of the microchip laser in [10]. Rather than supposing that Gpq � Gc, we
will assume that Gpq = O (Gc) and define the ratio

Γpq =
Gpq

Gc
= O (1) . (5.2)
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Figure 5.1: The n-L scheme. The figure is not to scale with respect to the energies: E0-E1 � E1-EN .

In order to treat quantities of order unity, we introduce the dimensionless variables

Ep =
dpEp

� 0
ΓüΓ^ , D =

NΩ ÄÄÄdÄÄÄ2
¶0

�
Γ^Gc

Ρ00, (5.3)

where Ω ÄÄÄdÄÄÄ2 = maxp{Ωp
ÄÄÄÄdp
ÄÄÄÄ2}, dp = Xp |-er| 0\ , and N is the density of atoms. On the

other hand, the atomic coherence between states p and q is rescaled as

Spq =
Gpq

Γü
NΩ ÄÄÄdÄÄÄ2
¶0

�
Γ^Gc

Ρpqei(Ωq-Ωp)t . (5.4)

Assuming that Γ^ � Γü,Gpq,Gc, we can eliminate the optical polarization adiabatically in
the Maxwell-Bloch equations. In addition, we rescale time as tü = Γüt. With the inversion
lifetime as the time unit, the cavity damping rate is rescaled as Κ = Gc/Γü. In the slowly
varying envelope and rotating wave approximations, this yields a variant of the global rate
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equations (3.2) and (3.3) encountered in Chapter II:

dEp (tü)
dtü =

Κ

2
K-1 + Lp

1
L à

L

0
2D (z, tü) sin2 IkpzM dzOEp (tü)

-Lpâ
q¹p

Eq (tü)
Γpq

1
L à

L

0
Spq (z, tü) sin IkpzM sin IkqzM dz (5.5)

¶D (z, tü)
¶tü = w - D (z, tü)

æçççç
è
1 +â

p

2
ÄÄÄÄEp (tü)ÄÄÄÄ2 sin2 IkpzMö÷÷÷÷

ø
+ O IΚ-1M , (5.6)

¶Spq (z, tü)
¶tü = ΚΓpq A-Spq (z, tü) + 2D (z, tü)Ep (tü)E*q (tü) sin IkpzM sin IkqzME + O (1) .

(5.7)

In Eq. (5.6), w is the pump parameter. To simplify this integro-differential system, we follow
the same approach as in Chapter II and expand the atomic variables in Fourier series. Being
primarily interested in the effect of low-frequency coherence, we take the simplest possible
ansatz for the population inversion profile:

D (z, tü) > D (tü) +â
p

Np (tü) cos I2kpzM . (5.8)

As for the low-frequency atomic coherences, we assume that

Spq (z, tü) > Spq (tü) sin IkpzM sin IkqzM . (5.9)

In this way, we are left with

dEp

dtü =
Κ

2
C-1 +Lp KD - Np

2
OGEp -

Lp

4
â
q¹p

EqSpq

Γpq
, (5.10)

dD
dtü = w -

æçççç
è
1 +â

q

ÄÄÄÄEq
ÄÄÄÄ2ö÷÷÷÷
ø

D +
1
2
â

q

ÄÄÄÄEq
ÄÄÄÄ2 Nq, (5.11)

dNp

dtü = -
æçççç
è
1 +â

q

ÄÄÄÄEq
ÄÄÄÄ2ö÷÷÷÷
ø

Np +
ÄÄÄÄEp
ÄÄÄÄ2 D, (5.12)

dSpq

dtü = ΚΓpq C-Spq + 2EpE
*
q KD - Np + Nq

2
OG . (5.13)

We have checked that the contributions coming from the O IΚ-1M terms in Eq. (5.6) and the
O (1) terms in Eq. (5.7) influence negligibly the laser dynamics, so we omit them. Equations
(5.10) to (5.13) constitute a first model of a laser operating on the n-L scheme. In the absence
of low-frequency coherence, they reduce to the TSD equations for a multimode laser [15].

5.2.1 Effect of the low-frequency atomic coherence

In order to assess the physical effect of Spq (tü), we first consider its phase. Introducing the
amplitude/phase decomposition Ep =

ÄÄÄÄEp
ÄÄÄÄ exp IijpM, Spq =

ÄÄÄÄSpq
ÄÄÄÄ exp IiΨpqM, we get for the
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phases

djp

dtü =
Lp

4
â
q¹p

ÄÄÄÄEq
ÄÄÄÄ ÄÄÄÄSpq
ÄÄÄÄ

Γpq
ÄÄÄÄEp
ÄÄÄÄ sin Ijp - jq - ΨpqM ,

dΨpq

dtü = 2ΚΓpq

ÄÄÄÄEp
ÄÄÄÄ ÄÄÄÄEq
ÄÄÄÄÄÄÄÄSpq
ÄÄÄÄ sin Ijp - jq - ΨpqM . (5.14)

It follows from Eq. (5.14) that Ψpq evolves rapidly until jp - jq - Ψpq is a multiple of 2Π.
On the other hand, the atomic coherence Spq (z, tü) is produced by a two-photon process that
involves Ep and Eq. Consequently, it is fairly localized at positions z* inside the cavity where
sin2 Ikpz*M and sin2 Ikqz*M are both maximum. Let us examine the situation sin Ikpz*M > 1
and sin Ikqz*M > 1, so that Spq (z*, tü) is given by Spq (tü) exp AiΨpq (tü)E. There, the quantum
state |z*\ of the medium is

|z*\ = cpeiΩpt ÄÄÄp\ + cqeiΩqt-iΨpq ÄÄÄq\ +â
j¹p,q

c je
iΩ jt-iΘ j ÄÄÄ j\ , (5.15)

with
cpcq � Spq (tü) . (5.16)

At z = z*, the electric field is essentially proportional to

Ep exp IiΩpt + jpM + Eq exp IiΩqt + jqM + c.c.

Therefore, neglecting fast oscillating contributions, the transition probability from this state
to the upper state ÄÄÄp\ induced by the electric field is, for short times:

P|z*\®|0\ = t2

�
2 |Xz* |erE (z*, t)| 0\|2

µ
ÄÄÄÄÄcpEp + cqEqei(jp-jq-Ψpq)ÄÄÄÄÄ2

µ
ÄÄÄÄcpEp

ÄÄÄÄ2 + ÄÄÄÄcqEq
ÄÄÄÄ2 + 2cpcqEpEq cos Ijp - jq - ΨpqM (5.17)

Since the phases lock to jp - jq - Ψpq = 2Π, the last term in (5.17) yields a maximum
constructive interference and the absorption is enhanced by the coherence Spq. In this way,
the set of low frequency coherences 9Spq= induces nonlinear absorptions of a purely quantum
nature.

It follows from the phase Eq. (5.14) that the dynamics of the amplitudes becomes phase-
independent. In the remainder of this chapter, we will therefore consider Ep and Spq as real.

5.2.2 Steady states

In this section, we study the steady states of the model and analyze their stability. The steady
state solutions can be classified according to the set of lasing modes. As a convention, we
shall use subscript l to designate a nonlasing mode and subscript m otherwise. The number
of lasing mode will be noted Nm. Moreover, it is simpler algebraically to parametrize the
steady states in terms of D rather than w. With that in mind, we introduce the quantities
F1 = ÚmL

-1
m and F2 = ÚmL

-2
m , where the summation is over the lasing modes only. The
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parameter Κ appearing in Eqs. (5.10) to (5.13) is usually very large, typically between 103

and 106, a fact that we will exploit to write down the steady state and to perform the linear
stability analysis. In steady state, the non lasing modes give, obviously

El , Nl, Slm, Sll¢ = 0, (5.18)

while for the excited mode, we have

E
2
m =

D -L-1
m

F1 - (Nm - 1/2)D
+ O IΚ-1M ,

Nm = 2 ID - L-1
m M + O IΚ-1M ,

Smm¢ = 2EmEm¢ (Lm +Lm¢ - D) + O IΚ-1M ,
w = D +

DF1 - F2

F1 - (Nm - 1/2)D
+ O IΚ-1M . (5.19)

The leading order part of the steady state solution is identical to the TSD model [16], except
for the coherence which do not appear in this model.

5.2.3 Linear stability analysis

Let us now study the linear stability of the solution (5.19). To this end, we define ep, d,
np, and spq as the deviations from the steady state values Ep, D, Np, and Spq, respectively.
Linearizing Eqs. (5.10) to (5.13), we are lead to solve an eigenvalue problem of the form

A.x = (ΚA-2 + A0) .x = Λx (5.20)

where A is the Jacobian matrix and x is the vector of deviations from the steady state. The
fact that Κ � 1 then suggests to introduce the perturbation expansions Λ = ΚÚ¥n=0 Κ

-n/2Λn

and x = Ú¥n=0 Κ
-n/2

xn and to solve the problem for each order in Κ, until the desired accuracy
is reached. The principal results are given below:

1. The solution (5.19) is stable only if D < L
-1
l , which defines the lasing threshold for

mode l:

wl = L
-1
l +

L
-1
l F1 - F2

F1 - (Nm - 1/2)L-1
l

+ O IΚ-1M . (5.21)

2. For any pair of indices p and q, we find the eigenvalue Λpq = -ΚΓpq. The associated
fluctuations affect Spq only and are decoupled from the rest of the system. Hence, any
small departure of Spq from its steady state is rapidly damped out.

3. Assuming for simplicity that all lasing modes have equal gain, i.e. Lm = 1 for all m, we
find a pair of complex conjugated eigenvalues associated to damped in-phase relaxation
oscillations

ΛR,± = a ± i
0
ΚWR, a < 0, WR =

0
w - 1. (5.22)

4. In the same limit of equal gains, we may write E2
m = I and Smm¢ = S in steady state.

We find Nm - 1 complex conjugate pairs of eigenvalues of the form

ΛL,± = Λ0 ± i
0
ΚWL, W2

L =
DI
2

. (5.23)
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The associated eigenvector is characterized by the constraint Úm em = 0, which is the
signature of antiphase dynamics. If we assume that all the coherences decay with the
same relaxation constant, Γmm¢ = Γ, the real part Λ0 is given by

Λ0,L =
S

2Γ
- (1 +NmI) , (5.24)

and there is a degenerate Hopf bifurcation if Λ0,L = 0. This occurs at a finite pump
intensity only if

Γ < Γmax =
Nm - 1

Nm (Nm - 1/2)
. (5.25)

This condition of existence for the Hopf instability depends on the cavity and coher-
ence damping rates only through the ratio Γ = Gpq/Gc.

We have thus found the existence of a Hopf bifurcation connected to the low-frequency
atomic coherence in the n-L scheme. Indeed, in the absence of this coherence, the system
(5.10)-(5.13) would reduce to the TSD equations, which admit only cw solutions. In the
limit of identical gains, the bifurcation is (Nm - 1)-fold degenerate and the unstable eigen-
vectors of the system indicate that the resulting sustained relaxation oscillations are in anti-
phase. They are therefore not observable in the total intensity close to the bifurcation point.
The condition (5.25) of existence of this instability justifies a posteriori our assumption that
Gpq = O (Gc) and not Gpq � Gc.

5.2.4 Reduction of the model

The second point in the linear stability analysis suggests that, unlike the field variables, we
can eliminate Spq adiabatically. This derives from the fact that Gpq � Γü. Such an elim-
ination does not suppress the existence of the Hopf bifurcation point, as long as the ratio
Γ = Gpq/Gc < Γmax. In this way, we obtain the simplest model for the n-L laser:

dIp

dtü = Κ C-1 + Lp KD - Np

2
OG Ip - Lpâ

q¹p

IpIq

Γpq
KD - Np + Nq

2
O ,

dD
dtü = w -

æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø

D +
1
2
â

q

IqNq,

dNp

dtü = -
æçççç
è
1 +â

q

Iq

ö÷÷÷÷
ø

Np + IpD.

(5.26)

The enhancement of absorption induced by the low-frequency coherences is attested in the
first equation of (5.26) by the minus sign before the sum.

5.3 Analysis of a two-transition laser

As in the study of the TSD+, we are forced to restrict our consideration to a specified number
of modes if we want to go further in the analysis. The simplest case to study is a laser
operating on two transitions. In the experiment reported on a microchip laser, this situation
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was encountered with a pump power between 450 mW and 640 mW, while the laser first
threshold was at 110 mW. We thus particularize Eqs. (5.26) to two modes. We simplify the
problem further by assuming that L1 = L2 = 1 . The antiphase nature of the periodic
solution that emerges from the Hopf instability suggests the following change of variables

Y1 = I1 + I2, Y2 = I1 - I2,

M1 = N1 + N2, M2 = M1 -M2, (5.27)

in order to ease algebraic manipulations. Clearly, the variable Y1 reflects the in-phase dynam-
ics in the modal intensities, while Y2 is related to antiphase dynamics. The same distinction
applies to M1 and M2. With these new variables, Eqs. (5.26) become

dD
dtü = w - (1 + Y1)D +

M1Y1 +M2Y2

4
, (5.28)

dM1

dtü = - (1 + Y1)M1 + Y1D, (5.29)

dM2

dtü = - (1 + Y1)M2 + Y2D, (5.30)

dY1

dtü = Κ CY1 (D - 1) -
M1Y1 +M2Y2

4
G - Y 2

1 - Y 2
2

2Γ
KD - M1

2
O , (5.31)

dY2

dtü = Κ CY2 (D - 1) -
M1Y2 +M2Y1

4
G . (5.32)

The steady state solution corresponding to multimode solution is given by Y1 = Y1S, Y2 = 0.
In the limit Κ ® ¥, the instability condition (5.24) is equivalent to Y1S = YH with

YH =
7Γ - 2 ±

0
4 - 12Γ + Γ2

2 (1 - 3Γ)
. (5.33)

This solution is physically acceptable only if it is positive, which imposes to choose the plus
sign in (5.33). In addition, Γ should be less than 1/3, in agreement with (5.25).

At the Hopf bifurcation point, the frequency of the periodic solution is WL (5.23). In
order to construct this solution, we define a bifurcation parameter Λ by Y1S = YH+¶2Λ, where
¶ = Κ-1/2. As Λ is increased beyond the bifurcation point a periodic solution emerges with
increasing amplitude. Since the oscillations are in antiphase, we seek a periodic solution that
has the following scaling in the field variables:

Y1 (tü) = YH + ¶
2Λ + ¶2y

(1)
2 (s, Τ,Σ) +¼, (5.34)

Y2 (tü) = ¶y(1)1 (s, Τ,Σ) + ¶2y
(2)
2 (s, Τ,Σ) +¼, (5.35)

s = ¶-1WLtü, Τ = ¶WLtü, Σ = ¶2tü. (5.36)

In this expression we have defined the natural timescale of oscillation s and the two slower
timescales Τ and Σ on which the envelope of the oscillations evolves. The fact that the
amplitude of oscillations in the total intensity Y1 is one order of magnitude smaller than in
Y2 is illustrated by the temporal timetrace in Fig. 5.2. The other variables are also expanded
in powers of ¶ (see Appendix 5.A). By substitution of the perturbation expansion (5.34) and
(5.35) into Eqs. (5.28) to (5.32), we find at the leading order that

y
(1)
1 (s, Τ,Σ) = Re Az (Τ,Σ) eisE , (5.37)
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Figure 5.2: Temporal evolution of the total intensity and the difference between the modal intensities.

Parameter values: ¶ = 0.01, Γ = 0.3, L1 = L2 = 1, Y1S = 4.4, which corresponds to w > 5.65.

The bifurcation point is YH = 4 (wH = 5.25). While oscillations are well developed in the modal

intensities, they are strongly attenuated in the total intensity.

where c.c. means “complex conjugate”. Using the method of multiple timescales, we find

that y
(3)
2 (s, Τ,Σ) remains bounded as s tends to infinity on condition that

¶z
¶Τ
= iz Ia1 + a2Λ + a3 |z|

2M , (5.38)

where the ai, given in Appendix 5.A, are real. This equation determines only partially the
evolution of z. For a given amplitude of oscillations, the frequency of the solution is shifted
from WL by an amount ¶2WL

ÄÄÄÄz-1 ¶z
¶Τ

ÄÄÄÄ. However, the dependence of |z| on the bifurcation
parameter Λ remains unspecified at this stage. This is done by considering the evolution of

y
(4)
2 (s, Τ,Σ). More specifically, we find that it remains bounded provided that

¶z
¶Σ
= z Ab1 (Λ - ΛH) - b2 |z|

2E , (5.39)

where the coefficients bi, derived in Appendix 5.A, are real and positive. Equation (5.39) fixes
the value of |z| as a function of Λ: it tends to

0
b1 (Λ - ΛH) /b2 as Σ tends to infinity. Since

both b1 and b2 are positive, the bifurcation is supercritical and the periodic solution is stable.
This expression also contains a correction of order ¶2 to the position of the Hopf bifurcation
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point: YH ® YH + ¶2ΛH+ O I¶4M. Fig. 5.3 compares our theoretical prediction with the result

of numerical integration of Eqs. (5.28) to (5.32) for Γ = 0.3. The coefficient
0

b1/b2 is

0.0
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0.3

0.4

0.5
m
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2 
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Figure 5.3: Bifurcation diagram showing the maxima of Y2 versus Y1S. Parameter values: ¶ = 0.01,

Γ = 0.3, L1 = L2 = 1. Full line: numerical integration of Eqs. (5.28) to (5.32). Broken line:

analytical curve.

plotted as a function of Γ in Fig. 5.4. We see that it vanishes for Γ = 3/14. This value of
Γ corresponds to the situation WR = 2WL. Through this second order resonance, energy is
transferred from the antiphase motion at frequency WL to the attenuated mode of in-phase
oscillations at frequency WR. This suggests that a different perturbation scheme from the one
used in Appendix 5.A could be more appropriate to study the laser dynamics for Γ > 3/14.
However, numerical simulations in this region of parameters do not reveal any special feature
in the dynamics.

5.4 Conclusion

A number of conclusions can now be drawn regarding the effect of low frequency atomic co-
herence on the laser dynamics if Γü � Gpq = O (Gc) � Γ^ and if population differences can
be approximated by the population in the highest level. The steady state field and population
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0

b1/b2 as a function of Γ

variables are only slightly perturbed by the low frequency coherence. The corrections are
O IΓü/GpqM compared with the TSD results. The simultaneous oscillation on different atomic
transitions creates a coherence between the lower levels via a parametric interaction. After a
time of the order of G-1

pq , the amplitude and phase of the low frequency coherences Spq reach
their adiabatic states. The linear stability analysis indicates that it is valid to eliminate these
atomic coherences adiabatically. This led us to derive the equations 5.26, which constitute a
minimal generalization of the TSD model to describe quantume interference effect in the mi-
crochip LNP laser. These equations were recently used to explain experimental observations
on an LNP laser with a KTP frequency-doubling crystal [18].

We have established that the coherence between the lowest atomic levels enhances the ab-
sorption via quantum interference. The sign in front of the new nonlinear term in Eq.(5.26)
confirms this interpretation. Without this, stimulated emission stabilizes the laser steady state
because any excess of intensity results in a diminution of the population inversion, and hence
of the gain. However, the transient evolution towards steady state is not smooth. It consists
of a large number of relaxation oscillations around the steady state because the escape rate of
the photons from the cavity is large compared to the build-up rate of the population inver-
sion (Gc/Γü = Κ � 1). This feature is apparent in the linear stability analysis, which reveals
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relaxation frequencies of the order of
0
GcΓü (Hz), i.e. large compared to the damping rate

of order Γü . On the other hand, in this class of lasers, small population fluctuations typically
give rise to

0
Gc/Γü times larger intensity fluctuations [17]. Therefore, the stabilizing effect

of stimulated emission is weak. In the presence of low frequency coherence it can even be
suppressed by the enhancement of stimulated absorption. The balance between the two ef-
fects is at the origin of the instability condition Λ0,L = 0 in (5.24). A condition of the form
Γpq = Gpq/Gc < Γmax for the existence of a selfpulsing regime has been obtained. Otherwise,
the low frequency coherence can never reach a sufficient level to significantly affect the ab-
sorption of the atoms. If the low frequency coherences vanish, the evolution equations (5.26)
are the usual TSD rate equations whose steady state is stable above the lasing threshold [15].
This again indicates that the low frequency coherence is the source of the selfpulsing instabil-
ity. Finally, the atomic coherence influences the amplification of the lasing modes only and
therefore does not modify the lasing thresholds given by Eq. (5.21). In the particular case of
a two-mode regime, we were able to construct the periodic solution in the neighborhood of
the Hopf bifurcation and found that it is stable.

The closest experimental realization of this model is the microchip LNP laser studied by
Otsuka et al. [10]. The cavity dimension (Lc > 1mm) yields a particularly large value of
Gc and realizes the important condition Gpq = O (Gc). In these experiments, the laser os-
cillates simultaneously on up to three atomic transitions. The central role played by atomic
coherence was confirmed experimentally by comparing multimode regime on multiple and
on single transitions. Self-pulsing behavior was observed in the former case whereas cw op-
eration only was obtained in the latter case. Moreover, the experimental selfpulsing regime
displayed antiphase dynamics as described in this theoretical work.

A completely different set of approximations for a similar energy level scheme was ana-
lyzed by Fu Hong and Haken [19] in an attempt to model some dye lasers. In their model,
simultaneous oscillation on different transitions was not allowed. Furthermore, they con-
sidered the opposite limit in which the low frequency coherences were adiabatically elimin-
ated while retaining the optical coherences. This set of approximations cannot be applied to
the microchip LNP laser.



Appendix to Chapter 5

5.A Derivation of the amplitude equation

For a given value of the total intensity Y1S the steady state is given by Y2S = M2S = 0 and

DS =
4 (1 + Y1S)

4 + 3Y1S - ¶2Y1S (2 + Y1S) /Γ
,

M1S =
Y1SDS

1 + Y1S
,

w = (1 + Y1S)DS -
M1SY1S

4
, (5.40)

with ¶ = Κ-1/2. Close to the bifurcation, we write Y1S = YH+¶2Λ. Substituting this expression
for Y1S in (5.40) and expanding in powers of ¶, we reexpress the steady state as

DS (¶) = DH + ¶
2D
(2)
S + ¶4D

(4)
S +¼, (5.41)

M1S (¶) = MH + ¶
2M
(2)
1S + ¶4M

(4)
1S +¼, (5.42)

w (¶) = w0 + ¶
2w(2) + ¶4w(4) +¼. (5.43)

To describe antiphase oscillations, we seek a small amplitude periodic solution of the form

Y2 = ¶y
(1)
2 (s, Τ,Σ) + ¶2y

(2)
2 (s, Τ,Σ) +¼, (5.44)

M2 = ¶
2m
(1)
2 (s, Τ,Σ) + ¶3m

(2)
2 (s, Τ,Σ) +¼. (5.45)

In this expansion, we treat the time variables s, Τ, and Σ as if they were independent. This
amounts to apply the chain rule

d
dtü ® ¶

-1WL
¶

¶s
+ ¶WL

¶

¶Τ
+ ¶2 ¶

¶Σ
. (5.46)

On the other hand, oscillations associated to D, M1, and Y1 are one order of magnitude
smaller because they correspond to in-phase dynamics. For these variables, we therefore use
the perturbation expansion

Y1 = YH + ¶
2Λ + ¶2y

(1)
1 (s, Τ,Σ) + ¶3y

(2)
1 (s, Τ,Σ) +¼, (5.47)

M1 = M1S (¶) + ¶
3m
(1)
1 (s, Τ,Σ) + ¶4m

(2)
1 (s, Τ,Σ) +¼, (5.48)

D = DS (¶) + ¶
3d(1) (s, Τ,Σ) + ¶4d(2) (s, Τ,Σ) +¼. (5.49)

87
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Substituting these perturbation expansions in the system (5.28)-(5.32), and collecting like
powers of ¶, we get a sequence of linear problems to solve. The leading order problem is

KWL
¶

¶s
-AO æçççç

è

m
(1)
2

y
(1)
2

ö÷÷÷÷
ø
= 0, A = K 0 DH

- 1
4YH 0 O . (5.50)

Its solution is

æçççç
è

m
(1)
2

y
(1)
2

ö÷÷÷÷
ø
=

z (Τ,Σ) eis

2
ÓvL + c.c., ÓvL = K -i4WL/YH

1 O . (5.51)

Above,
ÓvL is the eigenvector of A associated to the eigenvalue WL. In order to evaluate

solvability conditions in subsequent developments, we will need to use the expression of
the adjoint eigenvector,

ÓwL = I iYH / (4WL) , 1 M. It is solution to the adjoint eigenvalue
problem

ÓwL.A = iWL
ÓwL

At the next order, solution (5.51) is used to evaluate the inhomogeneous term in the two
following problems:

KW ¶
¶s
- BO æççççççç

è

d(1)

m
(1)
1

y
(1)
1

ö÷÷÷÷÷÷÷
ø

= R1, KW ¶
¶s
-AO æçççç

è

m
(2)
2

y
(2)
2

ö÷÷÷÷
ø
= R2, (5.52)

where

B =
æçççççç
è

0 0 -1
0 0 DH -MH

YH - 1
4YH 0

ö÷÷÷÷÷÷
ø

, R1 =
æçççççç
è

0
0

- 1
4m
(1)
2 y
(1)
2

ö÷÷÷÷÷÷
ø

,

R2 =
æçççç
è

- (1 + YH )m
(1)
2JD(2)S - 1

4M
(2)
1S N y(1)2

ö÷÷÷÷
ø

.

The right hand side R2 is periodic with frequency 1 (on the rescaled time s). It causes

therefore a secular divergence of m
(2)
2 and y

(2)
2 , unless Ù 2Π

0
ÓwL.R2e-isds = 0, which is precisely

the Hopf condition (5.33). The solutions of the problems (5.52) are

J d(1), m
(1)
1 , y

(1)
1 N = (1 + YH) zeis

4 (YH - 1)YHWL
I i, -i

4+3YH
, 2WL M + c.c., (5.53)

J m
(2)
2 , y

(2)
2 N = (1 + YH) zeis

YHWL
I WL, -i

4 YH M + c.c. (5.54)

With this, we can compute the right hand sides in the two next problems. They are

KW ¶
¶s
- BO æççççççç

è

d(2)

m
(2)
1

y
(2)
1

ö÷÷÷÷÷÷÷
ø

= R3, KW ¶
¶s
-AO æçççç

è

m
(3)
2

y
(3)
2

ö÷÷÷÷
ø
= R4, (5.55)

with

R3 =

æçççççççç
è

- (1 + YH) d(1) +
1
4YHm

(1)
1 + 1

4m
(1)
2 y
(1)
2

YHd(1) - (1 + YH)m
(1)
1

- (1 + YH) y
(1)
1 - 1

4m
(2)
2 y
(1)
2 + 1

4 m
(1)
2 y
(2)
2 + 1+YH

YH
y
(1)2
2

ö÷÷÷÷÷÷÷÷
ø

, (5.56)
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R4 = -W
¶

¶Τ

æçççç
è

m
(1)
2

y
(1)
2

ö÷÷÷÷
ø

+
æçççç
è

- (1 + YH )m
(2)
2 + D

(2)
S y
(1)
2

- 1
4 m
(1)
2 JΛ + y

(1)
1 N + Jd(1) - 1

4m
(1)
1 N y(1)2 + (1 + YH) y

(2)
2

ö÷÷÷÷
ø

. (5.57)

Here again, R4 is susceptible to lead to a secular divergence in m
(3)
2 and y

(3)
2 . To avoid this

fact, we require that Ù 2Π

0
ÓwL.R4e-isds = 0, which yields

¶z
¶Τ
= iz Ia1 + a2Λ + a2 |z|

2M , (5.58)

with the coefficients

a1 = -
(2 + YH) (1 + YH)

YH
, (5.59)

a2 =
(2 + YH) (2 + 3YH)

2YH (1 + YH) (4 + 3YH)
, (5.60)

a3 =
(3 + YH)

8 (YH - 1)YH
. (5.61)

Once condition (5.58) is satisfied, the solutions of the problem (5.55) are, on the one hand,

d(2) = -
160 + 392YH + 324Y 2

H + 97Y
3

H

32 (YH - 1)2 YH
z2e2is + c.c., (5.62)

m
(2)
1 =

40 + YH (8 + YH ) (8 + 3YH)

8 (YH - 1)2 YH
z2e2is + c.c., (5.63)

y
(2)
1 =

i (1 + YH) [44 + YH (68 + 27YH)]

16 (YH - 1)2 YHWL
z2e2is + c.c., (5.64)

and, on the other hand,

m
(3)
2 =

iWL

2
C 4 + 6YH + 3Y 2

H

YH (1 + YH ) (4 + 3YH)
Λ - 1 - YH +

(3 + YH ) |z|2

4 (YH - 1)YH
G zeis

-
iWL (7 + 5YH)

16 (YH - 1)YH
z3e3is + c.c., (5.65)

y
(3)
2 =

1
8
C 4 + 6YH + 3Y 2

H

YH (1 + YH) (4 + 3YH)
Λ - 1 - YH +

(3 + YH) |z|2

4 (YH - 1)YH
G zeis

+
3 (7 + 5YH)

64 (YH - 1)YH
z3e3is + c.c. (5.66)

Finally, m
(4)
2 and y

(4)
2 obey the following equation:

KW ¶
¶s
-AO æçççç

è

m
(4)
2

y
(4)
2

ö÷÷÷÷
ø
= R5, (5.67)

where

R5 = -W
¶

¶Τ

æçççç
è

m
(2)
2

y
(2)
2

ö÷÷÷÷
ø
-
¶

¶Σ

æçççç
è

m
(1)
2

y
(1)
2

ö÷÷÷÷
ø
+ R¢5, (5.68)
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R
¢
5 =

æççççç
è

- (1 + YH)m
(3)
2 - m

(1)
2 JΛ + y

(1)
1 N

-m
(2)
2
Λ+y

(1)
1

4 - m
(1)
2 y
(2)
1 + JD(4)S + d(2) - M4

1S+m
(2)
1

4 N y(1)2

ö÷÷÷÷÷
ø

+
æçççç
è

d(1)y
(1)
2 + D

(2)
S y
(2)
2

d(1)y
(2)
2 - m

(1)
1 y
(2)
2

4 + (1 + YH) y
(3)
2

ö÷÷÷÷
ø

, (5.69)

and secular divergence is avoided, provided that Ù 2Π

0
ÓwL.R5e-isds = 0. We thus obtain

¶z
¶Σ
= z Ab1 (Λ - ΛH) - b2 |z|

2E , (5.70)

with the coefficients

b1 =
8 + 8YH + YH

2YH (2 + YH) (4 + 3YH)
, (5.71)

b2 =
24 + YH I56 + 46YH + 13Y 2

HM
16 (YH - 1)2 YH

, (5.72)

ΛH = -
YH (2 + YH) (4 + 3YH) (1 + YH)

2

8 + 8YH + YH
. (5.73)

Since YH must be positive, we immediately see that b1 and b2 are positive too, which proves
the stability of the emerging periodic solution.
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Chapter 6

Inversionless amplification and
propagation in an electro-nuclear
level-mixing scheme

6.1 Introduction

The hope to realize laser amplification on nuclear transitions is at the origin of much theoret-
ical and experimental research (see the recent reviews [1, 2]). The main difficulty that arises
in this context is the technical impossibility to create an inversion of population between ad-
equate pairs of levels. To explain this, the frequency dependence of the spontaneous emission
rate is usually put forward. Indeed, for a transition with frequency Ω and dipolar moment Μ,
it is given by the Einstein coefficient:

A =
Ω3

3Π¶0
�
c3
ÄÄÄΜÄÄÄ2 .

Therefore, as we increase the frequency of the laser transition, it becomes harder to realize
the necessary population inversion. As in [2], though, we note that the value of the dipole
moment should also be taken into account so that, in general, the statement that a larger
spontaneous emission rate corresponds to a larger frequency is not true. It is a fact, however,
that no electromagnetic source is available to pump efficiently nuclear transitions and realize
a gamma laser in the traditional way.

In principle, this obstacle can be overcome by exploiting quantum interference. Ampli-
fication without population inversion (AWI) was predicted [3, 4, 5] and demonstrated ex-
perimentally [6, 7, 8, 9, 10, 11, 12, 13] on atomic transitions. For application of these ideas
to gamma optics, it was proposed to couple a radio-frequency electromagnetic field with the
Hyperfine levels of a nuclear ground state in order to create the necessary quantum coher-
ence [14]. However, it was later realized that, due to the equal population of all Hyperfine
levels for a sample at room temperature, this coherence cannot be achieved [15], so that the
extension of the principles of atomic AWI to nuclear transitions remains problematic. In
response to this problem, we discuss an electro-nuclear scheme where atomic and nuclear
transitions are coupled by the Hyperfine interaction. Two electromagnetic fields, one optical
and the other in the gamma range, interact with this system. It involves Mössbauer nuc-
lei, i.e., nuclei that emit or absorb electromagnetic radiation without recoil [16]. Another

93
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proposition to create nuclear coherence in Mössbauer nuclei was given in [17]. We show
that it is possible to cancel the absorption of gamma radiation by preparing the nuclei into
an appropriate superposition of the lowest levels. In this case, any population in the nuclei
excited state is sufficient to amplify the gamma field by stimulated emission, which leads to
AWI. This quantum preparation can be done through the coherent excitation of the atomic
transition by the optical field.

After having established the possibility of AWI of a gamma field in the continuous wave
regime, we note that part of the optical field energy is dissipated in this process. Therefore,
the quality of AWI is altered in the course of propagation. This leads us to estimate the
optimal length of amplification as a function of the input drive field intensity and the rate of
incoherent excitation. Beyond this length, the amplifying medium turns into an absorbing
medium, which makes this point a crucial piece of information to set up an experiment.
In [18], a similar study was done for a V -scheme in rubidium, with special attention to
Doppler broadening in vapor cells.

Because a high optical field amplitude is favorable to AWI, it is natural to expect that
an optical pulse can only improve the amplification. Indeed, short pulses provide high peak
intensity. We therefore reconsider propagation in this situation. Two types of pulses are
identified, depending on their duration relative to the other characteristic times of the system.
Specifically, we use the terms “adiabatic pulse” if the polarization variables can be eliminated
adiabatically on the pulse time scale and “ultrashort pulse” otherwise. In the former case, the
mechanism of AWI is basically the same as for the continuous wave regime. In the latter case,
AWI rests on a different mechanism, namely the creation of a temporal window of inversion
on the gamma transition through Rabi oscillations. Throughout this study, we assume that
the gamma field is weak in the sense that it perturbs negligibly the quantum populations.
Our theory is therefore linear in the gamma field, while nonlinear in the optical field.

This chapter is organized as follows. In Sec. 6.2, we introduce the electro-nuclear system
and present the model equations. We then analyze successively the inversionless amplification
of continuous waves, adiabatic pulses and ultrashort pulses in sections 6.3 to 6.5. Finally, we
conclude.

The results presented in this chapter were published in [19, 20].

6.2 The level Mixing scheme

In general, a nucleus that emits a gamma photon experiences a recoil, which broadens the
emission line. This has the effect of reducing the nuclear resonant cross sections. In solids,
some nuclei, called Mössbauer nuclei, depart from this rule, as their recoil is absorbed by the
lattice vibrations. This makes them the best candidates for gamma-ray lasers. Following the
proposition in [14], let us consider a densityN of such nuclei in a noncubic uniaxial crystal.
The ionic arrangement associated to the symmetry of the crystal induces a static electric field
gradient parallel to the c-axis. Moreover, any nucleus generally possesses some ellipticity,
characterized by the quadrupole moment. The interaction of the quadrupole moment with
this gradient lifts some degeneracies among the nuclear levels. Specifically, if the ground
state of the nucleus is a multiplet I = 3/2, it is split by the quadrupole interaction into the
degenerate doublets MI = ±1/2 and MI = ±3/2 (see Fig. 6.1).

In the system we consider, a magnetic field Hz is applied parallel to the c-axis. Due to the
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Figure 6.1: Energy diagram of the nucleus interacting with the gamma-probe and laser-pump. G and

E (g and e) denote the ground and excited nuclear (atomic) state, respectively. H is the static magnetic

field experienced by the nucleus in the c-direction. At H = 0, the ground nuclear state is split by the

interaction of the quadrupolar moment with the static electric field gradient. Level mixing occurs at

H = HC. Due to the transverse magnetic field H^, the levels do not cross but repel each others. If

the electron shell is excited, the local magnetic field differs from HC by the Hyperfine field HHF . The

diagram is not to scale: Ε2 - Ε1 � Ε3 - Ε3¢ � Ε3 - Ε1 � Ε4 - Ε1.
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Zeeman effect and the quadrupole interaction, there exists a critical field Hz = HC for which
the ground levels |G,-1/2\ and |G,-3/2\ coincide (see Fig. 6.1). If one adds to Hz a trans-
verse component H^, then the circular symmetry of the system is broken and the degeneracy
is removed. The eigenstates of the perturbed hamiltonian are, in first approximation, of the
form

|1\ = (S1 |G,-3/2\ + S2 |G,-1/2\) Ä ÄÄÄg\ , (6.1)

|2\ = (S2 |G,-3/2\ - S1 |G,-1/2\) Ä ÄÄÄg\ . (6.2)

In these expression the second part ÄÄÄg\ of the tensorial products refers to the ground state
of the electron shell. In the nucleus part, |G,-1/2\ and |G,-3/2\ are mixed. The corres-
ponding coefficients S1 and S2 are experimental parameters that are adjustable via H^. This
level mixing is useful for spectroscopy because it modifies the angular distribution of radi-
ations emitted by the nucleus. By examining this angular distribution, experimentalists can
thus detect the level crossing and, via Hz, deduce the initial splitting due to the quadrupole
interaction [21].

The excited state of the nucleus is chosen to have a total nuclear spin number I = 1/2
and the associated magnetic number MI = -1/2. We label it

|4\ = |E,-1/2\Ä ÄÄÄg\ . (6.3)

Gamma photons propagating parallel to the c-axis have a polarization transverse to the dir-
ection of quantization and can therefore induce transitions only with DMI = ±1. Thanks
to the level mixing produced by the transverse magnetic field H^, both 1 W 4 and 2 W 4
transitions are allowed by the selection rules.

Let us now consider the atomic excitation. In its excited state, the electron shell has a
different orbital angular momentum than in its ground state. Therefore, for an applied mag-
netic field Hz = HC the magnetic field felt by the nucleus in the direction of quantification
generally differs from HC. As a result, the possible excited states are (See Fig. 6.1)

|3 \ = |G,-3/2\Ä |e\ , (6.4)ÄÄÄ3¢] = |G,-1/2\Ä |e\ , (6.5)

where “e” stands for “excited”. Let us stress that, in the absence of this Hyperfine interaction,
the optically excited states would be

(S1 |G,-3/2\ + S2 |G,-1/2\) Ä |e\ ,
and

(S2 |G,-3/2\ - S1 |G,-1/2\) Ä |e\ ,
so that nucleus and electron shell would be uncoupled. By estimating the potential energy of
the nuclear magnetic moment in the magnetic field created by the electron shell, the energy
difference between states |3\ and ÄÄÄ3¢\ is of the order of [22].

Ε3 - Ε3¢ ~
e2 � 2

mempc2a
3
0

~ 10-6eV� Ε2 - Ε1. (6.6)
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In this expression, me is the mass of the electron, mp is the mass of the proton, and a0 is
the Bohr radius. To be distinguishable, the transitions 1 W 3 and 1 W 3¢ should therefore
be narrower than (Ε3 - Ε3¢) /

�
~ 109s-1. Such spectral narrowness requires to reduce sig-

nificantly the phonon broadening. This situation can be approached at the liquid nitrogen
temperature [23]. Thanks to the Hyperfine interaction, one can thus isolates levels |1\, |2\,
|3\, and |4\ from the rest of the spectrum. These states constitute our electro-nuclear model.

We complete this system by the addition of a resonant bichromatic field

E (z, t) = Edei(Ωdt-kd z) + Epei(Ωpt-kpz) + c.c., (6.7)

where “c.c.” means “complex conjugate”. The optical field Ed is nearly resonant with the
1 W 3 and 2 W 3 transitions. Hereafter, we call it the “drive field”. The other spectral
component, Ep, is coupled to the nuclear transitions 1 W 4 and 2 W 4. We call it the “probe
field”. The drive and probe transitions are characterized by the dipole matrix elements Μd

and Μp, respectively. To treat the interaction between E (z, t) and the medium, it is useful to
express the spectral components of the electric field in terms of the Rabi frequencies

Wd º
ΜdEd

� , Wp º
ΜpEp

� . (6.8)

Wd is the frequency associated to the energy of interaction between the optical dipole and the
drive field, while Wp corresponds to the potential energy of the nuclear dipole in the probe
electric field. On the other hand, with Gd and Gp denoting the drive and probe polarization
decay rates, the intensities are most conveniently described by the two stimulated transition
rates

Jd º
|Wd |

2

Gd
, Jp º

ÄÄÄÄWp
ÄÄÄÄ2
Gp

. (6.9)

Let us now examine the evolution equations of the matter and field variables. In the rotating
wave and slowly varying envelope approximations, the spatio-temporal evolution of the two
fields is governed by the wave equations

K ¶
¶z
+

np

c
¶

¶t
OWp = -i

NΩp
ÄÄÄÄΜp
ÄÄÄÄ2

2¶0
�
npc

Pp, (6.10)

K ¶
¶z
+

nd

c
¶

¶t
OWd = -i

NΩd
ÄÄÄΜd
ÄÄÄ2

2¶0
�
ndc

Pd . (6.11)

In these, Pd,p are the microscopic polarizations rescaled to the dipole matrix elements, and np,d

are the refractive indices at the two frequencies Ωp and Ωd . Furthermore, the Hamiltonian of
interaction between the electromagnetic field and the atom is, in the dipole approximation,
Hint = -ΜE, where we have noted the dipole operator Μ to avoid confusion with the subscript
“d” of the drive field. With this Hamiltonian, the equations for the fields are completed by
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Table 6.1: List of parameter values

symbol signification value

Gd relaxation rate of Pd 3.0 109s-1

Gp relaxation rate of Pp 106s-1

2Γd relaxation rate of Ρ33 103s-1

2Γp relaxation rate of Ρ44 106s-1

2R incoherent excitation of Ρ44 < 106s-1

G12 relaxation rate of Ρ12 150s-1

Ω21 frequency separation between |1\ and |2\ 103s-1

G34 relaxation rate of Σ34 3.0 109s-1

the semiclassical density matrix equations

Pd = S1Σ13 + S2Σ23, Pp = S1Σ14 + S2Σ24, (6.12)

¶ΡΗΗ
¶t

= -RΡΗΗ + ΓpΡ44 + ΓdΡ33 + iSΗ IWpΣ4Η + WdΣ3Η - c.c.M , (6.13)

¶Ρ33

¶t
= -2ΓdΡ33 - i IWdP*d - c.c.M , (6.14)

¶Ρ44

¶t
= -2ΓpΡ44 + Râ

Η=1,2

ΡΗΗ - i IWpP*p - c.c.M , (6.15)

¶ΡΗΗ¢

¶t
= - IG12 + iΩΗΗ¢M ΡΗΗ¢ + iSΗ IWpΣ4Η¢ + WdΣ3Η¢M - iSΗ¢ IWpΣ4Η + WdΣ3ΗM* ,(6.16)

¶Σ3Η

¶t
= - IGd + i∆ΗMΣ3Η + iW*d ISΗnΗ3 + SΗ¢ΡΗ¢ΗM - iSΗW

*
pΣ34, (6.17)

¶Σ4Η

¶t
= - IGp + iDΗMΣ4Η + iW*p ISΗnΗ4 + SΗ¢ΡΗ¢ΗM - iSΗW

*
dΣ43, (6.18)

¶Σ34

¶t
= - [G43 + i (∆1 - D1)] Σ34 + i IW*dPp - WpP*d M . (6.19)

In these equations, we have noted ni j = Ρii - Ρ j j. The indices Η and Η¢ designate the ground
state 1 or 2 with Η ¹ Η¢. R quantifies the incoherent pumping rate of state |4\ starting from
the ground states |1\ and |2\. Conversely, Γd and Γp are spontaneous decay rates of the excited
levels. An important parameter in the present analysis is the ratio

r º
R
Γp

. (6.20)

r < 1 means that there is no population inversion between level |4\ and the ground levels. As
already mentioned, Gd and Gp denote the decay rates of the optical and nuclear polarizations,
respectively; G12 is the decay rate of the quantum coherence between the ground levels. The
rate G34 is associated to the coherence between levels |3\ and |4\ and equals Gd + Gp. The
relaxation transition probabilities between the states |1\ and |2\ are assumed to be small and
hence are disregarded in the equations. Typical values of the relaxation rates are given in
Table 6.1. The detuning parameters are DΗ = Ω4Η - Ωp and ∆Η = Ω3Η - Ωd .

We shall assume throughout this study that the probe field is too weak to noticeably
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perturb the populations. The criterion for a weak probe is thus

Jp � Γp. (6.21)

By extension, since Γp £ Gp £ G34, we also have Jd � Gp,G34.

6.3 Continuous wave amplification and propagation

6.3.1 Amplification mechanism

In this section, we assume constant input fields and study their spatial evolution in the dir-
ection of propagation after atoms have reached their steady states. If the drive field is off and
no incoherent excitation is applied to the medium, the probe intensity decays exponentially
in the direction of propagation. Momentarily neglecting the detunings DΗ, the associated
attenuation coefficient Α(0)p , deduced from (6.10), (6.12), and (6.18), is

Α(0)p = -
NΩp

ÄÄÄÄΜp
ÄÄÄÄ2

¶0
�
npc

Im
Pp

Wp
=
NΩp

ÄÄÄÄΜp
ÄÄÄÄ2

¶0
�
npcGp

. (6.22)

In general, we may write the gain of the probe field as

Αp = Α
(0)
p Im
GpPp

Wp
. (6.23)

Similarly, we define Α
(0)
d and Αd .

It is important to note that, in the closed system {|1\,|2\,|3\,|4\}, the state

|-\ = S2 |1\ - S1 |2\ (6.24)

is non absorbent for gamma and optical photons that propagate in the c-direction of the
crystal. Because it is decoupled from the electromagnetic field, it is often referred to as the
“dark state”. By opposition, its orthogonal counterpart

|+\ = S1 |1\ + S2 |2\ (6.25)

is called the “bright state”*. The amplification of the probe field in the absence of a population
inversion between the state |4\ and any of the state |1\ and |2\ becomes possible if part of the
ground state population is transferred to the dark state. This amounts to create a coherence
Ρ12 between |1\ and |2\. Indeed, Eq. (6.18) together with (6.12) and (6.23) yields in steady

*These names are somewhat misleading. Indeed, the state that leaves light unabsorbed, |-\, should more
sensibly be called “transparent”. As for the state |+\, it does absorb light and henceforth should be called “dark”.
Wether the commonly accepted terminology is philosophical or psychological is a question that will not be
addressed in the present thesis.
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state the following expression for the gain:

Αp = Α
(0)
p (Ᾱ14 + Ᾱ24 + Ᾱ34) , (6.26)

Ᾱ14 = GpRe CS2
1 (Ρ44 - Ρ11) - S1S2Ρ12

Gp - iD1
G , (6.27)

Ᾱ24 = GpRe CS2
2 (Ρ44 - Ρ22) - S1S2Ρ21

Gp - iD2
G , (6.28)

Ᾱ34 = GpRe CK S2
1

Gp - iD1
+

S2
2

Gp - iD2
OΣ34G . (6.29)

The terms Ᾱ14 is the contribution of the 1 W 4 transition to the gain, while Ᾱ24 stems
from the 2 W 4 transition. Their expressions show that they can both be positive even if
Ρ44 < Ρ11, Ρ22, provided that Ρ12 is adequately prepared. The last term, Ᾱ34, results essentially
in a saturation of the gain with respect to the drive intensity.

The quantum coherence between the ground states is produced by the drive field. Through
stimulated absorption, it brings the ground state population to the state |3\ with a rate that
is approximately Jd. This population subsequently comes back into the ground states with a
rate Γd. In this latter process, any superposition of |1\ and |2\ can be reached, including the
dark state. The population that is not in the dark state can again absorb drive photons and,
after some cycles, is eventually transferred to the dark state. Stimulated absorption followed
by spontaneous emission thus form the mechanism by which coherence is created. The rate of
this composite process is the slowest of the rates Jd and Γd. Simultaneously, Ρ12 decays spon-
taneously with a rate G12 due to parasitic interactions of the nucleus with its environment.
Moreover, the states |1\ and |2\ should be populated simultaneously by the spontaneous de-
cay from level |3\. Since, these states have different energies, this decay should be affected by
a minimal uncertainty. Specifically, one should have

�
Jd,

�
Γd � Ε2 - Ε1, where Ε1 and Ε2 are

the energies of states |1\ and |2\, respectively. Introducing the notation

J12 º

1
G

2
12 + Ω

2
21, (6.30)

we are thus led to state the trapping condition

Jd , Γd � J12. (6.31)

This condition is illustrated in Fig. 6.2 where Αp IΩpM is plotted for different values of Jd and
Γd. The complete steady state solution of Eqs. (6.13) to (6.19) is computed in Appendix 6.A.
The maximal value of the normalized gain approaches the steady state value of Ρ44, indicating
that the ground state population does not absorb the probe field.

For the chosen set of parameters, Fig. 6.2 indicates that the gain is maximum if the probe
detunings D1,2 are negligible compared to the linewidth of the nuclear transitions. The same
is true for the optical transitions. Therefore, in order to simplify the analysis, we assume in
the remainder of this chapter that the detunings are negligible compared to the polarization
decay rates:

Ω21,
ÄÄÄÄDΗÄÄÄÄ , ÄÄÄÄ∆ΗÄÄÄÄ� Gd,Gp. (6.32)
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Figure 6.2: spectral gain of the probe intensity Αp normalized by Α(0)p . Gd , Gp, G12, Ω12, Γp are given

in Table 6.1. J12 > 1000 s-1. In Fig. (a), Γd is fixed to 3000 s-1 and Wd equals successively, from

curve 1 to 4: 2.106 s-1, 3.106 s-1, 5.106 s-1, 107 s-1. These values correspond to Jd = 1300 s-1,

3000 s-1, 8000 s-1, and 33000 s-1, respectively. In Fig. (b), Wd is fixed to 107s-1 and Γd equals

successively, from curve 1 to 4: 250 s-1, 750 s-1, 1000 s-1, and 3000 s-1.
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In addition, we assume for simplicity that S1 = -S2 = -1/
0

2 . Consequently, by symmetry,
if Ρ11 and Ρ22 are initially equal, they remain equal for all times. We therefore set

Ρ11 = Ρ22. (6.33)

Finally, we assume that

Jd � G34. (6.34)

Inasmuch as G34 � J12, this assumption is not very restrictive. Under approximations (6.32),
(6.33), and (6.34), the polarizations are

Pd = -iWd
n13 - ReΡ12

Gd
, (6.35)

Pp = -iWp
n14 - ReΡ12

Gp J1 + JdJ-1
34 N , (6.36)

J34 º G34GpG
-1
d . (6.37)

As we show it in Appendix 6.A, ReΡ12 tends to a maximum value equal to n13 under the in-
fluence of the drive field. The absorption of the drive field is thus suppressed while the probe
polarization becomes proportional to i (Ρ44 - Ρ33). This means that the ultimate condition
on gamma amplification rests on population inversion between states |3\ and |4\. From this
fact, the spontaneous decay of Ρ33 acts in favor of gamma amplification by increasing the
population inversion Ρ44 - Ρ33. The same inversion condition will be found for adiabatic
pulses, for which formula’s (6.35) and (6.36) also hold.

6.3.2 Propagation

The steady state solution of Eqs. (6.13) to (6.19) under the approximations (6.32), (6.33),
and (6.34) is computed in the Appendix 6.A. Substituting this solution in the field propaga-
tion equations (6.10) and (6.11), we obtain:

dJd

dz
=

-Α
(0)
d F ΓdJd

(2 + r) Γd + (3 + r)F Jd
, (6.38)

dJp

dz
=

Α(0)p [(r - F ) Γd - (1 - r)F Jd] Jp

J1 + JdJ-1
34 N [(2 + r) Γd + (3 + r)F Jd]

, (6.39)

where

F º
G12Jd + J2

12

J2
d + 2G12Jd + J2

12

. (6.40)

The function F is connected to the creation of low frequency coherence by

ReΡ12 = (1 - F ) n13,

and varies from 1 to 0 with increasing Jd . The sign of the numerator in Eq. (6.39) determines
wether the medium is amplifying or absorbent for the probe field. In the strong drive field
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limit Jd � J12, we note that F ® G12/ Jd. From this, we deduce the minimum incoherent
excitation rmin required for the probe amplification:

lim
Jd®¥
(rmin - F ) Γd - (1 - r)F Jd = 0

Þ rmin =
G12

G12 + Γd
. (6.41)

The value of rmin decreases with increasing Γd , which confirms the beneficial role of the
level |3\ spontaneous decay in inversionless amplification. Alternatively, one can consider
propagation in a medium subjected to uniform incoherent excitation r and calculate the

minimum value of the drive intensity Jmin
d such that the probe field is amplified

(r - F ) Γd - (1 - r)F Jd = 0

Þ Jd = Jmin
d (r) º

k1 +
0

k3

k2
, (6.42)

with

k1 = (1 - r) I2Γ2
d + J2

12M - ΓdG12, k2 = 2rΓd - 2 (1 - r) G12,

k3 = 4 (1 - r) [rΓd - (1 - r) G12] ΓdJ2
12 + A(2r - 1) ΓdG12 - (1 - r) J2

12E2 . (6.43)

Considering Eqs. (6.38) and (6.39), we note that dz
dJd

and
dJp

dJd
are analytically integrable with

respect to Jd. The knowledge of Jmin
d then allows us to compute the maximum amplification

length zmax and the corresponding probe intensity Jmax
p . Given the input intensities J

in
d and

Jin
p and the incoherent excitation r, we obtain

Α
(0)
d zmax = K3 + r

Γd
+

2 + r
G12
O IJin

d - Jmin
d M

+ (2 + r)
æççç
è
ln

J
in
d

Jmin
d

-
Ω2

21

G12
ln

J2
12 + G12J

in
d

J2
12 + G12Jmin

d

ö÷÷÷
ø

, (6.44)

Α
(0)
d

Α
(0)
p

ln
Jmax

p

Jin
p

= l1 ln
J

in
d

Jmin
d

+ l2 ln
J34 + J

in
d

J34 + Jmin
d

+ l3 ln
J2

12 + G12J
in
d

J2
12 + G12Jmin

d

. (6.45)

The coefficients l j in (6.45) are given by

l1 = r - 1, l2 =
(1 - r) (Γd - J34)

Γd
+

J2
34 - J34G12

J34G12 - J2
12

, l3 =
-rJ34Ω2

21

G12 JJ34G12 - J2
12N . (6.46)

This solution is illustrated in Fig. 6.3. Since the criterion of an efficient drive is Jd � J12,
the stimulated transition rate Jd is scaled to J12. To interpret the formulas (6.44) and (6.45),

let us suppose that the input drive field intensity is much larger than J12 and Jmin
d . The first

term in the right hand side of Eq. (6.44) is then dominant, indicating that the optimal length
scales linearly with the input drive intensity. This follows from the fact that each segment of
the medium dissipates a certain amount of energy as it reaches the dark state. Once in the
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Figure 6.3: Steady state intensity versus distance of propagation. The drive field intensity is rescaled to

J12. Initial condition: J
in
d = 10J12. Incoherent excitation r = R/Γp = 0.6. The propagation constants

are taken equal: Α(0)p = Α
(0)
d . The other parameters are given in Table 6.1.

dark state, the medium becomes transparent to the drive beam anymore, while it amplifies

the probe beam through the population in |4\. Supposing in addition that J
in
d � J34, the

right hand side of the probe propagation equation (6.39) becomes independent of Jd and the
probe intensity grows exponentially up to z = zmax. This yields

Jmax
p = Jp (z

max) ~ Jin
p exp CΑ(0)p

Α
(0)
d

K r
G12
-

1 - r
Γd
O IJin

d - Jmin
d MG . (6.47)

This last formula shows that the maximum probe field depends exponentially on the input
drive intensity. This conclusion holds as long as the probe field is weak in the sense given by
(6.21).

6.4 Adiabatic pulse amplification

We now examine the dynamical response of the medium to a drive pulse of duration Τ that
is short compared to the atomic population lifetime, while sufficiently long to justify the
adiabatic elimination of the polarizations Pd and Pp. Specifically, with the average input
intensity XJd\ defined as Τ-1 Ù ¥-¥ Jd (0, t ¢) dt ¢, we assume that

G12,Ω12, Γd � Τ
-1, XJd\� Gd ,Gp,G34, J34. (6.48)
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Initially, the populations are distributed according to the incoherent excitation and the quantum
coherences vanish:

Ρ0
11 = Ρ

0
22 =

1
2 + r

, Ρ0
44 =

r
2 + r

, Ρ0
33 = Ρ

0
12 = Σ

0
i j = 0. (6.49)

Substituting (6.35) in Eqs. (6.13) to (6.16) and making use of approximation (6.48), we find
that

n13 - ReΡ12

n
0
13 - ReΡ0

12

= exp K-4à t

-¥

Jd Iz, t ¢M dt ¢O º K (z, t) . (6.50)

The function K measures the degree of quantum coherence produced by the driving field.
It indicates that the low frequency coherence ReΡ12 tends a maximum value equal to n13 at
a rate K-1¶K/¶t = -4Jd (z, t). From (6.35) and (6.36), the absorption of the drive field is
thus suppressed while the probe polarization becomes proportional to i (Ρ44 - Ρ33). In the
present situation, the creation of the dark state is a purely stimulated process, since its rate is
proportional to the number of photons in the drive field. Maximum quantum interference is
produced ifK� 1. The details of this process are most easily understood in the basis formed
by the dark and bright states |-\ and |+\. Initially, there is equipartition of the population in
these two states, so that Ρ12 = 0. The drive field Jd excites population from state |+\ to state

|3\, leaving |-\ unaffected. For a sufficiently intense drive field, the states |+\ and |3\ become
equipopulated. In this way, the fraction of the ground state population prepared in the dark
state |-\ by the drive field is maximized. This results in an increase of the low frequency
coherence ReΡ12.

By substituting the time dependent solution of Eqs. (6.13) to (6.19) into the field equa-
tion (6.10) and (6.11), we get:

K ¶
¶z
+

nd

c
¶

¶t
O Jd =

-Α
(0)
d KJd

2 + r
, (6.51)

K ¶
¶z
+

np

c
¶

¶t
O Jp =

Α(0)p (2r - 1 -K) Jp

2 (2 + r)
, (6.52)

The propagation equation for the drive field Jd was already analyzed in [4]. It has the solution

Jd (z, t) =
Jd I0, t - nd

c zM
1 + Bexp J 2

2+rΑ
(0)
d zN - 1FK I0, t - nd

c zM , (6.53)

which is used to solve Eq. (6.52). If the probe and drive pulse propagate at the same velocity,
nd = np, we find an analytical solution for the probe pulse

Jp (z, t) =
Jp I0, t - nd

c zM exp I r-1/2
2+r Α

(0)
p zM

:1 + Bexp J 1
2+rΑ

(0)
d zN - 1FK I0, t - nd

c zM>Α(0)p / J2Α(0)d N . (6.54)

This solution is illustrated in Fig. 6.4. If the coherence between the ground levels is max-
imum, K � 1, it follows from Eq. (6.54) that Jp (z) > Jp (0) exp I r-1/2

2+r ΚpzM. Therefore r

must at least exceed 1/2 in order to obtain amplification, which means Ρ
0
44 > 0.2. Although

this result is significant from the point of view of amplification without inversion, it might
not be sufficient in practice. Indeed, if one can bring 20% of the population in level |4\
without damage for the amplifying medium, then one can probably create an inversion of
population too.
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Figure 6.4: Peak intensity as a function of the propagation distance in the adiabatic pulse regime.

Input condition: Ù +¥-¥ Jd (0, t) dt = 10. Same parameters as in Fig. 6.3.

6.5 Ultrashort pulse amplification

Another regime of propagation exists if the pulse duration is shorter than all other charac-
teristic times. The electro-nuclear scheme then becomes an effective V -scheme, composed

of the states |3\ and |4\ as the excited states and the bright state |+\ = (|1\ - |2\) /02 as
the ground state (see Fig. 6.5). The propagation of ultrashort pulses in such a scheme was
analyzed in [24]. The population in the bright state is given by

Ρ++ =
1
2
(Ρ11 + Ρ22 - Ρ12 - Ρ21) .

In the weak probe limit and neglecting all relaxation processes in Eqs. (6.13) to (6.19), we
obtain for the drive field the closed set of equations

¶

¶t
(Ρ33 - Ρ++) = -4Wd (z, t) ImPd ,

¶

¶t
ImPd = Wd (z, t) (Ρ33 - Ρ++) .
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Figure 6.5: Reduced level scheme for ultrashort pulses. States |3\ and |4\ are coupled to state |+\ only.

The resonant drive field induces cyclic exchange of population between states |3\ and |+\. These are

the Rabi oscillations.

These equations are identical to those governing the resonant interaction of an electromag-
netic field with a two-level system. The solution is

Ρ33 - Ρ++ = IΡ0
33 - Ρ

0
++M cos Θd (z, t) , (6.55)

ImPd = IΡ0
33 - Ρ

0
++M sin Θd (z, t) , (6.56)

where Ρ
0
33 and Ρ0

++ denote the initial state of the electro-nuclear system and

Θd (z, t) = à t

-¥

2Wd Iz, t ¢M dt ¢. (6.57)

The solution (6.55) shows that the population flows in a cyclic way between the states |+\
and |3\, with an instantaneous frequency 2Wd (z, t). These are the “Rabi oscillations”. The
factor 2 in 2Wd (z, t) is related to the way we have define Ed and Ep in (6.7). The variable
Θd (z, t) is the area of the drive field. If the total area of the pulse, Θd (z,¥), is 2Π, then
the medium is in the same state prior and after the passage of the pulse. In this case, the
net exchange of energy between the drive field and the medium vanishes, which renders
possible the lossless propagation of the drive pulse. This phenomenon is called Self-Induced-
Transparency (SIT) [25]. When the pulse area is Π, the population in the bright state is

temporarily Ρ
0
33, so that the population inversion between the states |4\ and |+\ is Ρ

0
44 - Ρ

0
33.

This allows to open a temporal window of population inversion on the probe transition, as
fully described in [24]. It was numerically shown in [24] that eventually all the drive photons
can be converted into probe photons, with the conservation of energy being assured by the

inversion Ρ
0
44-Ρ

0
33. There is, however, a dynamical limitation on the number of photons that
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can propagate in a single pulse. The equation for the drive field can be written as

¶2Θd (Ξ, Η)
¶Ξ¶Η

= GdΑ
(0)
d IΡ0

33 - Ρ
0
++M sin Θd (Ξ, Η) . (6.58)

Ξ = z, Η = z -
c
nd

t.

This equation, known as the Sine-Gordon equation, possesses soliton solutions having a total
area equal to 0, 2Π, 4Π, 6Π¼ [26]. Among these, only the 2Π-area solution consists of a single
pulse. If, initially, the drive area well exceeds 2Π, the pulse breaks up in multiple 2Π-area
pulses in the course of propagation, each giving rise to a separate probe pulse. Furthermore,
since the velocity of each pulse depends on its peak intensity, light can be expected to exit the
amplifying medium in a very irregular fashion. Finally, we note that, as all the pump photons
of a pulse are transformed into probe photons, the field resonant with the + W 4 transition
becomes a drive field for the + W 3 transition. The flow of energy between the fields can
thus be reversed for long propagation distances.

6.6 Summary and Conclusion

In view of applying the principles of quantum interference to gamma amplification, we have
studied an electro-nuclear system. We have shown that the Hyperfine interaction allows to
couple the nucleus with its electron shell. Thanks to this coupling, it is possible to create
the necessary nuclear coherence for Amplification Without Inversion by the application of
an optical “drive” field. In the continuous wave limit, stimulated absorption of the drive
photons and spontaneous emission form a composite process by which the ground state is
trapped into the non absorbent state. A simple condition was found for efficient population
trapping

Jd , Γd � J12.

In addition, the minimum rate of incoherent nuclear excitation was found to be

rmin =
Rmin

Γp
=

G12

G12 + Γd
.

Furthermore, we showed that the optimal amplification length is in first approximation pro-
portional to the input drive intensity. Since a weak “probe” gamma field grows exponentially
with distance, the maximum output gamma intensity scales exponentially with the input
drive intensity.

Next, we have studied the propagation of pulses of duration Τ. The case Τ-1 � G12, Γd, Γp

corresponds approximately to a continuous wave and has just been discussed. In the case of
adiabatic pulses, Τ is intermediate between the populations and the polarizations lifetimes.
The mechanism of inversionless amplification is essentially the same as before. Indeed,
Figs. 6.3 and 6.4 illustrate qualitatively similar propagation behaviors in the cw and adia-
batic pulse regimes, respectively. However, the spontaneous decay of the atomic excited state
is negligible over the duration of the adiabatic pulse, which makes population trapping less
efficient. The minimum pump rate is, in this regime of propagation, rmin = 0.5. Accordingly,
at least 20% of population should be in the state 4, but if this was technically possible, then
a population inversion would be feasible too.
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Comparing continuous waves with ultrashort pulses, the ultimate amplification condi-
tion is in both cases to have a population inversion between the upper states |3\ and |4\.
While population is driven irreversibly to the dark state in the cw regime, it flows periodic-
ally between states |+\ and |3\ in the latter regime, at the instantaneous frequency 2Wd. The
periodic exchange of population between states |+\ and |3\, or Rabi oscillations, temporarily

establishes an inversion Ρ
0
44 - Ρ

0
33 on the probed transition. Short pulse propagation benefits

from the distortionless Self-Induced Transparency. However, we pointed out that the max-
imum amount of energy that can be obtained in a single probe pulse is limited by the 2Π-area
of the drive pulse. This limitation does not exist in the cw regime.

The best way to amplify gamma photon by stimulated emission seems therefore to resort
to continuous waves. It is now the turn of nuclear physicists to find a nucleus that fits the
scheme in Fig.6.1.
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Appendix to Chapter 6

6.A Steady state solution

In this Appendix, we derive the steady state response of the electro-nuclear system. Setting
the time-derivatives to zero in Eqs. (6.13) to (6.19), we get an algebraic system to solve. To
this end, it is convenient to introduce the Lorentzian factors

LΗ3 º
Gd

Gd - i∆Η
, LΗ4 º

Gp

Gp - iD j
, L34 º

G34

G34 + i (∆1 - D1)
,

L12 º
G12

G12 + iΩ12
, L ji º L

*
ji. (6.59)

Working in the weak probe limit, we neglect quadratic terms in Wp. Solving successively
Eqs. (6.19), (6.18) and (6.17) then gives:

Pp = -i
Wp

Gp
Lp â

Η=1,2

KS2
ΗLΗ4nΗ4 + SΗSΗ¢LΗ4ΡΗΗ¢ + S2

ΗLΗ4L34
WdP*d
G34
O , (6.60)

Pd = -i
Wd

Gd
â
Η=1,2

IS2
ΗLΗ3nΗ3 + SΗSΗ¢LΗ3ΡΗΗ¢M , (6.61)

where

Lp º
1

1 +ÚΗ=1,2 S2
ΗLΗ4L34Jd/ J34

, J34 º
G34Gp

Gd
. (6.62)

Substituting the expression of the polarization into Eqs. (6.13) to (6.16) we are left with

1 = Ρ11 + Ρ22 + Ρ33 + Ρ44, (6.63)

0 = -RΡΗΗ + ΓpΡ44 + ΓdΡ33 - 2JdRe ALΗ3 IS2
ΗnΗ3 + SΗSΗ¢ΡΗΗ¢ME , (6.64)

0 = -ΓdΡ33 + JdRe

éêêêêêêêêêë
â
Η=1,2

LΗ3 IS2
ΗnΗ3 + SΗSΗ¢ΡΗΗ¢M

ùúúúúúúúúúû
, (6.65)

0 = -2ΓpΡ44 + Râ
Η=1,2

ΡΗΗ, (6.66)

Ρ12 = -
L12Jd ÚΗ=1,2 SΗSΗ¢LΗ3nΗ3
G12 + L12ÚΗ=1,2 S2

ΗLΗ3Jd
. (6.67)

We solved the set of Eqs. (6.63) to (6.67) numerically for different values of the detuning
parameters. Using expressions (6.60) and (6.23), we then evaluated Αp and obtained Fig. 6.2.
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Next, we consider the limits
ÄÄÄÄDΗÄÄÄÄ , ÄÄÄÄ∆ΗÄÄÄÄ� Gd,Gp, which implies LΗ4,LΗ3 > 1. Supposing

for simplicity that S2
1 = S2

2 = -S1S2 = 1/2, the polarizations become

Pp = -i
Wp

Gp
Cn14 - ReΡ12 + O K Jd

G34
,

Jd

J34
OG , (6.68)

Pd = -i
Wd

Gd
(n13 - ReΡ12) . (6.69)

On the other hand, the system of Eqs. (6.63) to (6.67) reduces to

Ρ11 = Ρ22, Ρ44 = rΡ11, 1 = 2Ρ11 + Ρ33 + Ρ44,

ΓdΡ33 = JdF n13, ReΡ12 = (1 - F ) n13, (6.70)

with

F º
G12Jd + J2

12

J2
d + 2G12Jd + J2

12

, J12 º

1
G

2
12 + Ω

2
21. (6.71)

It is thus easy to compute n13, n14, and ReΡ12, and then Pd and Pp to derive the propagation
equations (6.38) and (6.39). Let us note that, by substituting the last relation of (6.70) in
(6.68) and considering the limit F ® 0, the gain condition in steady state becomes:

Ρ44 - Ρ33 > 0.
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Chapter 7

Conclusions

In this thesis, we have analyzed laser problems using methods that were developed in the wider
scope of nonlinear science. Being eventually confronted with sets of nonlinear differential
equations to solve, we have each time pointed out their underlying physical meaning. Let us
review our main results.

In our study of a microchip laser with a weakly saturable absorber (LSA), we character-
ized the bifurcation layer over which harmonic intensity oscillations evolve into pulsating
oscillations. In particular, we determined the dependence of the size of this bifurcation layer
on the laser parameters. We could therefore indicate ways to design a microchip LSA with
a sufficiently smooth bifurcation layer to be experimentally studied. A potential advantage
of this would be the ability to tune the shape of the intensity pulse via the pump parameter.
From a fundamental viewpoint, we showed that the underlying LSA dynamics close to the
Hopf bifurcation is intimately related to the Lotka-Volterra problem, which is well known
in ecology and chemistry. This is also the first example of a singular Hopf bifurcation in a
laser system. The LSA problem dramatically illustrates how the gain dynamics can disturb
the quiet behavior of a laser.

In a free-running multimode laser with spatially modulated pump, part of the medium
may act as a saturable absorber. If the laser operates in the multimode regime, a similar
self-pulsing behavior as in the microchip LSA can arise. Here again, the transition from
harmonic to pulsating oscillations occurs over a very small range of parameters, although
not as abruptly as in the LSA case. Viewed as individual oscillators, the lasing cavity modes
are globally coupled by the mean longitudinal gain. This gives rise to antiphase dynamics,
resulting in a smoother behavior in the total intensity output than in each modal intensity.
An interesting continuation of this work would be to study to which extend such a self-
organization survives in the self-pulsating domain of this system. Preliminary numerical
simulations seem to indicate that this property is very robust. This suggests to design highly
multimode self-pulsating lasers that function on the present mechanism. The required strong
spatial modulation of the pump could easily be achieved with semiconductor lasers. Another
consequence of an inhomogeneous gain distribution over the cavity axis is the existence of
bistability between steady states.

After having encountered the antiphase type of synchronization in multimode lasers, we
studied the conditions for in-phase synchronization in a semiconductor laser (SCL) array
with an external mirror. A connection was found with the Kuramoto set of equations, which
is a generic model for globally coupled oscillators. We extended this model to investigate the
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synchronization properties of the array with respect to both optical and relaxation oscillations.
The time delay is found to produce many solutions, all displaying in-phase synchronization.
These solutions can be viewed as nonlinear modes of the composite cavity formed by the
SCL array and the external mirror. Indeed, they satisfy resonance conditions expressed by
transcendental equations for the optical and relaxation frequency. The number of nonlinear
in-phase modes increases with the external cavity length, which favors in-phase synchroniz-
ation both in steady and time-dependent states. They are analog, though different, to the
linear eigenmodes of the composite cavity in the absence of the semiconductor material.
Therefore, using an external cavity, one can improve the beam quality obtained from a SCL
array and broaden its range of applications. In the future, it would be interesting to invest-
igate the array dynamics for larger coupling strength. This would allow to achieve in-phase
synchronization with broader distributions of natural optical frequencies in the array. An-
other direction of research would be to study the dynamics of a broad area laser with the
same coupling scheme.

Following the idea that low frequency atomic coherence effects could play a role in the dy-
namics of the microchip LNP laser, we built a theory for a multi-transition laser. We derived
the minimal set of equations to describe these effects and gave them a physical interpretation:
the multimode electromagnetic field brings the ground state population into a quantum su-
perposition of states where stimulated absorption is enhanced. The resulting model explains
the experimentally observed oscillatory output of the LNP laser. Recently, this model was
successfully used to describe an experiment carried out on a microchip LNP laser with a KTP
frequency-doubling crystal.

Finally, we have derived the necessary conditions to achieve inversionless amplification
of gamma radiation in an electro-nuclear scheme. These conditions involve not only the
intensity of an optical drive field, but also impose constraints on the characteristic decay rates
of the medium. If these conditions are fulfilled, the required pump power can be decreased
by orders of magnitudes with respect to conventional laser systems. It remains to find a
Mössbauer nuclear candidate that matches these conditions. This would pave the way to the
construction of the first gamma ray-laser.

By this work, we hope to have convinced the reader that nonlinear aspects are not only
of fundamental but also of practical importance in dealing with light-matter interaction.
Through a proper comprehension and characterization of the related phenomena, we have
shown on multiple instances that new or better coherent optical sources can be developed.


