Big Bang Nucleosynthesis

Karsten JEDAMZIK†

† LPTA, Montpellier
Outline of Talk

I. Theory of standard BBN

II. Observational determination of primordial light elements abundances/comparison to standard BBN prediction

III. BBN as a probe of the early Universe and Physics beyond the standard model

IV. Astrophysical/nuclear physics solutions to the Lithium problem(s)

V. Beyond the standard model solutions to the lithium problem(s)
The standard BBN model at $\Omega_b h^2 \approx 0.02273$
Assumptions underlying Standard Big Bang Nucleosynthesis

- General relativity
- Equilibrium initial conditions with baryon-to-photon ratio 6.2×10^{-10}
- Vanishing lepton number chemical potentials
- Radiation energy density given only by photons, electrons/positrons, neutrinos
- No decaying or annihilating relic particles
- No inhomogeneities in baryons
- No small antimatter domains
- No impurities like cosmic strings, primordial black holes
SBBN: A one parameter model

Cyburt et al. 08

baryon density $\Omega_b h^2$

overconstrained \rightarrow consistency checks possible
II. Observational determination of primordial light elements abundances/ comparison to standard BBN predictions
Helium-4 from low-metallicity extragalactic HII regions

systematic uncertainties

- atomic emissivities (changed Y_p by $+0.008$!)
- temperature variations
- ionisation corrections
- underlying stellar absorption

$Y_p = 0.2477 \pm 0.0029, 0.2516 \pm 0.0011$ Peimbert et al. 07, Izotov et al. 07

more realistic error bars: $Y_p = 0.249 \pm 0.009$ Olive & Skillman 04
Observational inferred Helium-4 with time

Year

\(^4 \text{He mass fraction } Y_p \)

WMAP
D/H from Quasar Absorption Systems

![Graph showing D/H ratio for Ly-α, Ly-β, and Ly-γ lines](image)

Tytler, Fan, & Burles 96

significant dispersion → underestimated systematic errors?

Iocco et al. 09

\[\text{D/H} = 2.98^{+0.29}_{-0.23} \times 10^{-5} \]
The 7Li Spite plateau

- (almost) no variation with metallicity and stellar temperature
- (almost) no measurable star-to-star scatter
- Interpretation - the Primordial 7Li Abundance

Spite & Spite 82, Bonifacio & Molaro 97, Ryan et al 99, Melendez Ramirez 04, Charbonnel & Primas 05, Asplund et al 06
$^{6}\text{Li}/\text{H}$ observations

A second Lithium plateau?

$^{6}\text{Li}/\text{H} \approx 6 \times 10^{-12}$ compare to standard BBN $^{6}\text{Li}/\text{H} \sim 10^{-14}$

- ^{6}Li and ^{7}Li absorption features blend together
- ^{6}Li from asymmetry of lines
- asymmetry of lines from convective Doppler shifts?
- non-LTE hydrodynamic simulations of two groups reach opposite conclusions
Are the 6Li detections real?

- only four $\sim 2\sigma$ detections
- however, distribution skewed towards positive 6Li/H
- a positive 6Li/H detection in HD84937 by four(!) groups
$^3\text{He}/D \lesssim 1.5$ for solar system Geiss & Gloeckner 07 is secure and useful in constraining non-standard BBN Sigl et al. 06
SBBN Predictions against Observations

Cyburt, Fields, & Olive 08

7Li discrepancy $4.2 - 5.3\sigma$
Situation Summary

<table>
<thead>
<tr>
<th>Element</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>^4He</td>
<td>ok/inconclusiv</td>
</tr>
<tr>
<td>^2H</td>
<td>good</td>
</tr>
<tr>
<td>^3He</td>
<td>inconclusive</td>
</tr>
<tr>
<td>^7Li</td>
<td>disagreement</td>
</tr>
<tr>
<td>^6Li</td>
<td>?</td>
</tr>
</tbody>
</table>
III. BBN as a probe of the early Universe and Physics beyond the standard model
The BBN early Universe Probe

- the epoch of BBN is (one) of the furthest back reaching precision probe of the early Universe

- Almost all of the theoretical work in BBN the last three decades has been done in exploring non-standard models

- changed expansion rate during BBN
- lepton chemical potentials
- neutrino oscillations, sterile neutrinos, exotic neutrino interactions
- baryon inhomogeneous models, matter-antimatter inhomogeneous models
- varying fundamental constants
- decay and annihilation of relic particles during BBN
- catalysis of BBN
BBN with decaying and annihilating particles

- injection of energetic nucleons and mesons
 - charge exchange reactions
 \[\pi^- + p \rightarrow \pi^0 + n \]
 - elastic- and inelastic scatterings
 \[p + p \rightarrow p(n) + (p)n + \pi's \]
 - spallation reactions
 \[p(n) + ^4\text{He} \rightarrow ^3\text{H}, ^3\text{He}, ^2\text{H} + \ldots \]
 - Coulomb stopping of charged nuclei
 \[^3\text{H} + e^\pm \rightarrow ^3\text{H}' + e^\pm \]
- injection of energetic photons and electrons/positrons
 - pair production on CMBR
 \[\gamma + \gamma_{\text{CMBR}} \rightarrow e^- + e^+ \]
 - inverse Compton scattering
 \[e^\pm + \gamma_{\text{CMBR}} \rightarrow e^\pm + \gamma \]
 - Bethe-Heitler scattering
 \[\gamma + p \rightarrow p + e^- + e^+ \]
 - photodisintegration
 \[\gamma + ^4\text{He} \rightarrow ^3\text{H} + p \]
Example: Supersymmetry, BBN, and T_{rh}

gravitino not LSP $\rightarrow T_{rh}$ must be low to avoid too many decays of thermally produced gravitinos during BBN

gravitino LSP \rightarrow NLSP decays dangerous unless $\tau \lesssim 5 \times 10^3$ sec \rightarrow gravitino LSP somewhat lighter than weak scale \rightarrow reheat temperature must be low

\rightarrow supergravity and leptogenesis (in most cases) incompatible
IV. Astrophysical/nuclear physics solutions to the lithium problem(s)
Nuclear reactions/stellar atmospheres?

- stellar temperature $\Delta T \sim 900$ K underestimated seems impossible

- narrow nuclear resonance in
 $^7\text{Be} + ^2\text{H} \rightarrow ^9\text{B}^{*}_{5/2+} \rightarrow ^4\text{He} + p$

Cyburt & Pospelov 09, Angulo et al. 05

seems unlikely but not ruled out \rightarrow need further measurement
Depletion of Lithium in PopII stars?

^7Li is observed in the atmospheres of PopII stars. It may be destroyed via $^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He}$ in the interior of the star. Atmospheric material transported into the star and ^7Li-depleted gas returned to the atmosphere.

Spite plateau not primordial?

Depletion of ^7Li by factor 2 – 4 in halo stars is not understood and may currently only be explained with fine-tuned stellar conditions.

Dispersion?
7Li depletion by atomic diffusion in PopII stars?

Korn et al., Richards et al.

- atomic diffusion
- turbulent mixing

Fine-tuned turbulent diffusion coefficient $D_T = 400 D_{^{4}He}^{^{2}H}(\frac{\rho}{\rho(T_0)})^{-3}$ at $\log(T_0) = 6.0 \pm 0.1 \rightarrow \pm 25\%$

→ factor 1.8 7Li depletion

but stellar models ad hoc and tuned

SBBN + WMAP predicted Li/H (2−σ-error bars) → factor 1.8 7Li depletion

observed Li/H by different groups

\(^6\text{Li} \) production by early cosmic rays: Energetics?

\(^6\text{Li} \) originates in galactic cosmic ray nucleosynthesis (along, with \(^9\text{Be}, \) and \(\text{B} \))

- via \(p, \alpha + \text{CNO} \rightarrow \text{LiBeB} \)
- and some \(\alpha + \alpha \rightarrow \text{Li} \)

need 100 eV/nucleon to synthesize \(^6\text{Li}/H \sim 5 \times 10^{-12} \)

standard cosmic rays may provide 5 eV/nucleon (up to \([Z] \sim -2.7 \))

only very efficient accretion on central black hole, or large fraction of baryons in supermassive \(\sim 100M_\odot \) stars may provide the required cosmic rays

Suzuki & Inoue 00 Rollinde et al. 05, Prantzos et al. 05 Nath et al. 05
V. Beyond the standard model solutions to the lithium problem(s)
Destruction of ^7Li during BBN due to injection of neutrons

K.J. 04

^7Li destruction: $^7\text{Be} + n \rightarrow ^7\text{Li} + p$; $^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He}$

at $T \approx 30$ keV

need only 10^{-5} extra neutrons per baryon

some extra ^2H will be also synthesized

→ possible by decay/annihilation or relic particles, evaporation of defects
Production of ^6Li in cascade nucleosynthesis

^6Li is very easily produced by small "perturbations" of the standard model Dimopoulos et al. 88, K.J. 00

Electromagnetic:
$$\gamma + ^4\text{He} \rightarrow ^3\text{H} + p$$
$$^3\text{H} + ^4\text{He} \rightarrow ^6\text{Li} + n$$
\text{at } T \lesssim 0.1 \text{ keV}

Hadronic:
$$n + ^4\text{He} \rightarrow ^3\text{H} + p + n$$
$$^3\text{H} + ^4\text{He} \rightarrow ^6\text{Li} + n$$
\text{at } T \lesssim 10 \text{ keV}
charged relic - nuclei bound states during/after BBN

Pospelov 06,07, Kohri & Takayama 06, Kaplinghat & Rajaraman 06, Cyburt et al 06, Pradler & Steffen 06, Hamaguchi et al. 07, Bird, Koopmans, & Pospelov 07, Kawasaki et al. 07, Takayama 07, Jittoh et al. 07, Jedamzik 07,08

binding energy between nuclei and electrically charged weak mass scale relics appreciable:

\[{^7}\text{Be} + \tilde{\tau} \rightarrow ({^7}\text{Be}\tilde{\tau}) + \gamma, \quad {^4}\text{He} + \tilde{\tau} \rightarrow ({^7}\text{He}\tilde{\tau}) + \gamma, \quad \text{etc.} \]

Bohr radius of bound nuclei between 2 − 4 Fermis

→ formation of bound states towards the end of BBN
Fraction of nuclei bound to X^-

Oh$^2 = 0.41$, $M_x = 1$ TeV

Karsten Jedamzik, Brussels, December 3rd '09 – p. 29
Production of ^6Li in catalytic nucleosynthesis

negatively charged weak mass scale particles X^- during BBN →

formation of bound states with nuclei

$^7\text{Be} + X^- \rightarrow (^7\text{Be}X^-) + \gamma$ at $\approx 30\text{ keV}$

$^4\text{He} + X^- \rightarrow (^4\text{He}X^-) + \gamma$, at $\approx 10\text{ keV}$

X^- acts as catalysator for reactions

$(^4\text{He}X^-) + D \rightarrow ^6\text{Li} + X^-$

$^4\text{He}X^- + ^4\text{He} \rightarrow (^8\text{Be}X^-) + \gamma$;

$^8\text{Be}X^- + n \rightarrow ^9\text{Be} + X^-$

important when $B_h \lesssim 10^{-2}$ as with supersymmetric stau!
Catalysis and 6Li, 7Li, and 7Be

Catalysis:

- main production mechanism for 6Li if $B_h \lesssim 10^{-2}$
- may not solve the 7Li problem, unless $B_h \lesssim 10^{-5}$ rather small and $\Omega X \gtrsim 10$ rather large
- not clear if may lead to some 9Be production
The lithium friendly parameter space in cascade nucleosynthesis

K.J. 04

D/H
3e-05

7Li/H
1e-10

6Li/7Li 1
0.1
1e-02

10
10^2 10^3 10^4 10^5 10^6
τ (sec)

Bailly, K.J., Moultaka 08

Ω X h^2 B_h

10^{-1}
10^{-2}
10^{-3}
10^{-4}
10^{-5}
10^{-6}
10^2 10^3 10^4 10^5
τ (sec)

Y_p > 0.258
D/H > 4x10^{-5}

Karsten Jedamzik, Brussels, December 3rd, 09 – p. 32
Signatures at the LHC!

A metastable particle X with life time between $100 - 1000$ sec, if not too massive, could be potentially produced at the LHC (since having at least some hadronic interactions), and, if electromagnetically or strongly interacting stopped in the detector \rightarrow smoking gun for non-standard BBN \rightarrow possible connection to the dark matter

Examples:
Gluino in split supersymmetry
supersymmetric stau Next-to-LSP with gravitino LSP
Example: Gravitino dark matter in the CMSSM

K.J., Choi, Roszkowski, Ruiz de Austri 06
Solving the ^6Li and ^7Li problems by neutralino annihilation?
Varying fundamental constants and ^7Li

Dmitriev, Flambaum, & Webb 04, Dent, Stern, & Wetterich 07, Berengut, Flambaum, & Dmitriev 09

^7Li depends strongly on B_d and $B_{^7\text{Be}}$

$\Delta B_d/B_d \approx -0.019 \pm 0.005 \rightarrow$ reduce ^7Li (and ^4He)

$\Delta m_q/m_q \approx 0.013 \pm 0.002 \rightarrow$ reduce ^7Li
Conclusions

- The by standard BBN at η_{WMAP} predicted D (and $^4\mathrm{He}$) are in good agreement with those observed.

- In contrast, there is a factor 3-4 discrepancy between SBBN predicted and observationally inferred $^7\mathrm{Li}$.

- This discrepancy could possibly be removed if $^7\mathrm{Li}$ is destroyed in Pop II stars, though how this is done exactly is not understood.

- Alternatively BBN could have been non-standard, e.g. including the decay of a relic particle \rightarrow potentially testable at the LHC.

- Observations of the existence of a $^6\mathrm{Li}$ plateau (similar to the $^7\mathrm{Li}$ Spite plateau) are currently controversial.

- BBN continues to be a powerful probe of the early Universe and physics beyond the standard model.