Universal properties of dark matter halos and infall model

Igor Tkachev

INR

Brussels, April 30, 2010
Motivation

- The flux from DM decay

\[F_{DM} = \frac{\Gamma \Omega_{fov}}{8\pi} \int_{los} dr \rho_{DM}(r) \]

- Average DM column density

\[S = \frac{2}{r_*^2} \int_0^{r_*} r' dr' \int dz \rho(\sqrt{r'^2 + z^2}) \]

- We can parametrize it as \(S \propto \rho_* r_* \)

- \(S \) looks to be the same, from dwarfs to clusters

- It is essentially insensitive to the choice of fitting DM profile

Boyarsky et. al., 2006
Motivation

- The flux from DM decay

\[F_{DM} = \frac{\Gamma \Omega_{fov}}{8\pi} \int_{\text{los}} dr \rho_{DM}(r) \]

- Average DM column density

\[S = \frac{2}{r_*^2} \int_0^{r_*} r' dr' \int dz \rho(\sqrt{r'^2 + z^2}) \]

- We can parametrize it as \(S \propto \rho_* r_* \)

- \(S \) looks to be the same, from dwarfs to clusters

- It is essentially insensitive to the choice of fitting DM profile

Boyarsky et. al., 2006
Motivation

- The flux from DM decay

\[F_{DM} = \frac{\Gamma \Omega_{fov}}{8\pi} \int_{los} dr \rho_{DM}(r) \]

- Average DM column density

\[S = \frac{2}{r_*^2} \int_0^{r_*} r' dr' \int dz \rho(\sqrt{r'^2 + z^2}) \]

- We can parametrize it as \(S \propto \rho_* r_* \)

- \(S \) looks to be the same, from dwarfs to clusters

- It is essentially insensitive to the choice of fitting DM profile

Boyarsky et. al., 2006
Constant DM surface density?

Donato et al., 2009
An evidence in favour of MOND?

Gentile et al., Nature'09
Scaling of DM column density

\[S \propto M_{\text{halo}}^{0.2} \]

Boyarsky et al., 2009
Scaling of DM column density

Napolitano et al., 2010
Infall model

Position of each particle in the halo obey

\[
\frac{d^2 r}{dt^2} = - \frac{GM(r,t)}{r^2}
\]

For initial perturbations with power-law profiles

\[
\frac{\delta M_i}{M_i} = \left(\frac{M_0}{M_i} \right)^\epsilon
\]

the halo evolves in a self-similar manner, e. g.

\[
M(r,t) = M(t)\mathcal{M}(r/R(t))
\]

\[
r(r_i, t) = R(t)\lambda(t/t_*)
\]

\[
\rho(r, t) = \frac{M(t)}{R^3(t)} \times F \left(\frac{r}{R(t)} \right)
\]
Infall model

Sikivie, Yun Wang & I.T., 1996
Infall model

Best fit: $R = 1.07 \pm 0.14$ Mpc, $h = 0.71 \pm 0.5$

G. Steigman & I. T., 1998
Diemand and Kuhlen, 2008
Infall model

\[\nu(\epsilon, \xi)^2]

\[j=0 \]

\[\tilde{j}=0.2 \]

\(\xi = r/R \)

Sikivie, Yun Wang & I.T., 1996
\[\rho \propto r^{-2} \] between first inner and outer caustics

\[\rho \propto r^{-\gamma} \] inside first inner caustics, where

\[\gamma = \frac{9\epsilon}{3\epsilon + 1} \]

\[\gamma \approx 1.1 \quad \text{for} \quad \epsilon = 0.2 \]

Sikivie, Yun Wang & I.T., 1996
Qualitative understanding

- Self-similarity implies
 \[S \propto \rho_* r_* \propto \rho_{ta} R_{ta} \]

- Infall implies
 \[R_{ta} \propto (Gt^2 M)^{1/3} \]

- If there are deviations from self-similarity
 \[S \propto c(M) \cdot M^{1/3} \]

- Concentration parameter
 \[c = r_* / R_{ta} \]
 is a weak function of mass,
 \[c \propto M^{-0.1} \]

- Therefore
 \[S \propto \frac{M^{0.23}}{t^{4/3}} \]
Concentration parameter

\[(M_{200}/1\text{e}17)^{-0.1} \]
Scaling of DM column density

Infall $S \propto M_{\text{halo}}^{1/3 - 0.1}$, best fit $S \propto M_{\text{halo}}^{0.2}$

Boyarsky et al., 2009
Gravity vs. cosmological expansion

Let mass M creates a gravitational potential $\phi(r)$

- Turn around time

$$t_{ta} = \frac{1}{\sqrt{2}} \int_{0}^{R_{ta}} \frac{dr}{\sqrt{\phi(r) - \phi(R_{ta})}}$$

- Any gravitational potential of the form

$$\phi(r) = -\frac{GM}{r} F\left(\frac{\rho(r)}{\rho_0}\right)$$

leads to the scaling $S \propto M^{1/3}$

- Example: Schwarzschild-de Sitter potential

$$\phi(r) = -\frac{GM}{r} - \frac{\Lambda r^2}{6} = -\frac{GM}{r} F\left(\frac{\Lambda}{G\rho(r)}\right)$$
Large scale modifications of gravity

- A possible set of consistent (as a spin-2 field theory) large scale modifications of gravity is described by two parameters - scale r_c and a number $0 \leq \alpha \leq 1$

- In these models (DGP, ”degravitation”)

$$\phi_\alpha(r) = -\frac{GM}{r} \pi\left(\frac{r}{r_V}\right)$$

- where the Vainshtein radius:

$$r_V = \left(2GMr_c^4(1-\alpha)\right)^{\frac{1}{1+4(1-\alpha)}}$$

- Only for $\alpha = 1/2$

$$\phi(r) = -\frac{GM}{r} F\left(\frac{\rho(r)}{\rho_0}\right)$$
Restrictions on modifications of gravity

DM column density, log_{10}[S/M_{sun} pc^{-2}]

- Clusters of galaxies
- Groups of galaxies
- Spiral galaxies
- Elliptical galaxies
- dSphs

Norm. branch, \(\alpha = 0 \); \(r_c = 150 \) Mpc
Self-acc. branch, \(\alpha = 0 \); \(r_c = 150 \) Mpc
Norm. branch, \(\alpha = 1/4 \); \(r_c = 300 \) Mpc
Self-acc. branch, \(\alpha = 1/4 \); \(r_c = 300 \) Mpc
Best-fit model \(S \propto M^{0.23} \)

Boyarsky & Ruchayskiy, 2010