Dark matter distribution around massive black holes and in phase-space

Francesc Ferrer

Washington University in St. Louis

Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
Outline

Introduction: detecting dark matter

The DM distribution around a supermassive BH

DM annihilation in phase-space

Phase space distribution: Eddington’s inversion

Conclusions

FF & Daniel Hunter, JCAP 1309, 005 (2013) [arXiv:1306.6586]
The case for dark matter

Most economical explanation of:

- The rate of expansion of the universe.
- The formation of large scale structure.
- The dynamics of galaxies, clusters, . . .

Expected in natural extensions of the SM.
The case for dark matter

Most economical explanation of:

- The rate of expansion of the universe.
- The formation of large scale structure.
- The dynamics of galaxies, clusters, . . .

Expected in natural extensions of the SM.
An example: WIMPs

Similar to a heavy neutrino, $m_\chi \approx 100$ GeV, weak-scale interactions produce observed abundance from thermal decoupling:

$$\Rightarrow <\sigma v> \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$

The same interactions make it potentially detectable:

- $\chi\chi \rightarrow \gamma\gamma, \pi^0, e^\pm, \ldots$
- $\chi N \rightarrow \chi N$

Other examples include axions, MeV particles, \ldots
An example: WIMPs

Similar to a heavy neutrino, $m_\chi \approx 100$ GeV, weak-scale interactions produce observed abundance from thermal decoupling:

$$\Rightarrow \langle \sigma v \rangle \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$

The same interactions make it potentially detectable:

- $\chi \chi \rightarrow \gamma \gamma, \pi^0, e^\pm, \ldots$
- $\chi N \rightarrow \chi N$

Other examples include axions, MeV particles, \ldots
An example: WIMPs

Similar to a heavy neutrino, $m_{\chi} \approx 100$ GeV, weak-scale interactions produce observed abundance from thermal decoupling:

$$\Rightarrow <\sigma v> \approx 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$$

The same interactions make it potentially detectable:

- $\chi \chi \rightarrow \gamma \gamma, \pi^0, e^\pm, \ldots$
- $\chi N \rightarrow \chi N$

Other examples include axions, MeV particles, \ldots
Indirect detection

\[Flux = \frac{\langle \sigma v \rangle}{4\pi m_{dm}^2} \frac{dN_\gamma}{dE_\gamma} \left\{ \begin{array}{c} \text{Number of SM particles} \\ \text{Amount of DM} \end{array} \right\} \times \int_0^\infty \rho^2(r) dl \]

- **Astrophysical factor** suggests looking at GC, dwarf spheroidals, . . .
- Photons and neutrinos point back to the source, while charged particles diffuse.
The distribution of DM: simulations

1 billion 4,100 M_\odot particles. 0.5 kpc in the host halo.
The distribution of DM: observations

Jeans’ equation shows that $M/L \sim 1000$. Clean systems.
The central supermassive black hole

- Will focus on the super-massive BH at the center of the Galaxy.
- Similar effects will occur in the cores of AGNs, or in IMBHs.
The central supermassive black hole

We will assume that a black hole of mass $4 \times 10^6 M_\odot$ grows adiabatically over $\sim 10^{10}$ yr.
The central supermassive black hole

We will assume that a black hole of mass \(4 \times 10^6 M_\odot\) grows adiabatically over \(\sim 10^{10}\) yr.
Is the growth adiabatic?

- **Growth time**
- **Dynamical time**

\[
\frac{r_h}{\sigma} \leq \frac{m}{\dot{m}_{\text{Edd}}}
\]

\[
r_h \approx \frac{Gm}{\sigma^2} \quad \Rightarrow \quad t_{\text{dyn}} \approx 10^4 \text{yr} \leq t_{\text{Salpeter}} \approx 5 \times 10^7 \text{yr}
\]

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic heating of DM by stars, ...
Is the growth adiabatic?

- Growth time
- Dynamical time

\[
\frac{r_h}{\sigma} \leq \frac{m}{\dot{m}_{\text{Edd}}}
\]

\[
r_h \approx \frac{Gm}{\sigma^2} \rightarrow t_{\text{dyn}} \approx 10^4 \text{yr} \leq t_{\text{Salpeter}} \approx 5 \times 10^7 \text{yr}
\]

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic heating of DM by stars, ...
Is the growth adiabatic?

- Growth time
- Dynamical time

\[\frac{r_h}{\sigma} \leq \frac{m}{\dot{m}_{\text{Edd}}} \]

\[r_h \approx \frac{Gm}{\sigma^2} \rightarrow t_{\text{dyn}} \approx 10^4 \text{yr} \leq t_{\text{Salpeter}} \approx 5 \times 10^7 \text{yr} \]

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic heating of DM by stars, ...
Is the growth adiabatic?

- Growth time
- Dynamical time

\[\frac{r_h}{\sigma} \leq \frac{m}{\dot{m}_{\text{Edd}}} \]

\[r_h \approx \frac{Gm}{\sigma^2} \rightarrow t_{\text{dyn}} \approx 10^4 \text{yr} \leq t_{\text{Salpeter}} \approx 5 \times 10^7 \text{yr} \]

Caveats: Hierarchical mergers, initial BH seed off-center, kinetic heating of DM by stars, ...
Growing a BH: Newtonian analysis

We are interested in the DM density:

\[\rho = \int f(E, L) d^3v\]

\[= 4 \int dE \int LdL \int dL_z \frac{f(E, L)}{r^4 \left| v_r \right| \left| v^\theta \right| \sin \theta}\]

\[= 4\pi \int dE \int LdL \frac{f(E, L)}{r^2 \left| v_r \right|}\]

The limits of integration are set by the requirements:

- \(\left| v_r \right| = (2E - 2\Phi - L^2/r^2)^{1/2} \text{ real} \Rightarrow 0 \leq L \leq [2r^2(E - \Phi)]^{1/2}\).
- DM particle is bound to the halo \(\Rightarrow \Phi(r) \leq E \leq 0\).

Take into account particles trapped inside the event horizon by modifying boundary conditions in an *ad hoc* manner: \(L \geq 2cR_S\).
Growing a BH: Newtonian analysis

We are interested in the DM density:

\[\rho = \int f(E, L) d^3 v\]

\[= 4 \int dE \int L dL \int dL_z \frac{f(E, L)}{r^4 |v_r| |v^\theta| \sin \theta} \]

\[= 4\pi \int dE \int L dL \frac{f(E, L)}{r^2 |v_r|}\]

The limits of integration are set by the requirements:

- \[|v_r| = (2E - 2\Phi - L^2 / r^2)^{1/2} \text{ real} \Rightarrow 0 \leq L \leq [2r^2(E - \Phi)]^{1/2}.\]
- DM particle is bound to the halo \(\Rightarrow \Phi(r) \leq E \leq 0.\)

Take into account particles trapped inside the event horizon by modifying boundary conditions in an \textit{ad hoc} manner: \(L \geq 2cR_S.\)
Growing a BH: Newtonian analysis

We are interested in the DM density:

\[\rho = \int f(E, L) d^3 v \]

\[= 4 \int dE \int L dL \int dL_z \frac{f(E, L)}{r^4 |v_r||v^\theta| \sin \theta} \]

\[= 4\pi \int dE \int L dL \frac{f(E, L)}{r^2 |v_r|} \]

The limits of integration are set by the requirements:

- \(|v_r| = (2E - 2\Phi - L^2 / r^2)^{1/2} \) real \(\Rightarrow 0 \leq L \leq [2r^2(E - \Phi)]^{1/2}. \)
- DM particle is bound to the halo \(\Rightarrow \Phi(r) \leq E \leq 0. \)

Take into account particles trapped inside the event horizon by modifying boundary conditions in an \textit{ad hoc} manner: \(L \geq 2cR_S. \)
Growing a BH: Newtonian analysis

Each particle in an initial DM distribution $f(E, L)$, will react to the change in Φ caused by the growth of the BH by altering its E, L and L_z. However, the adiabatic invariants remain fixed:

$$I_r(E, L) \equiv \oint v_r dr = \oint dr \sqrt{2E - 2\Phi - L^2/r^2} ,$$
$$I_\theta(L, L_z) \equiv \oint v_\theta d\theta = \oint d\theta \sqrt{L^2 - L_z^2 \sin^{-2} \theta} = 2\pi (L - L_z) ,$$
$$I_\phi(L_z) \equiv \oint v_\phi d\phi = \oint L_z d\phi = 2\pi L_z . \quad (1)$$

The shape of the distribution function is also invariant, $f(E, L) = f'(E'(E, L), L)$.
Growing a BH: Newtonian analysis

Each particle in an initial DM distribution \(f(E, L) \), will react to the change in \(\Phi \) caused by the growth of the BH by altering its \(E, L \) and \(L_z \). However, the adiabatic invariants remain fixed:

\[
I_r(E, L) \equiv \oint v_r dr = \oint dr \sqrt{2E - 2\Phi - L^2/r^2} ,
\]

\[
I_\theta(L, L_z) \equiv \oint v_\theta d\theta = \oint d\theta \sqrt{L^2 - L_z^2 \sin^{-2} \theta} = 2\pi(L - L_z) ,
\]

\[
I_\phi(L_z) \equiv \oint v_\phi d\phi = \oint L_z d\phi = 2\pi L_z .
\] (1)

The shape of the distribution function is also invariant, \(f(E, L) = f'(E'(E, L), L) \).
Newtonian BH

For a Newtonian point mass,

\[I_r(E, L) = 2\pi \left(-L + \frac{Gm}{\sqrt{-2E}} \right) \]

And we can find the final DM density in the form:

\[\rho(r) = \frac{4\pi}{r^2} \int_{-Gm/r}^{0} dE \int_{0}^{L_{\text{max}}} LdL \frac{f'(E'(E, L), L)}{\sqrt{2E + 2Gm/r - L^2/r^2}} \]

Young 80, Quinlan et al. 95, Gondolo & Silk 95
Growing a BH: Relativistic analysis

1. Generalize the definition of density:

\[J^\mu(x) \equiv \int f^{(4)}(p)p^\mu_\mu \sqrt{-g} \, d^4p, \]

2. Use relativistic expressions to write it in terms of the invariants of motion (energy, angular momentum, . . .).

3. Use relativistic expressions for the actions.

For Kerr:

\[\mathcal{E} \equiv -u_0 = -g_{00}u^0 - g_{0\phi}u^\phi, \]
\[L_z \equiv u_\phi = g_{0\phi}u^0 + g_{\phi\phi}u^\phi, \]
\[C \equiv \Sigma^4(u^\theta)^2 + \sin^{-2}\theta L_z^2 + a^2 \cos^2\theta(1 - \mathcal{E}^2), \]
\[g_{\mu\nu}p^\mu p^\nu = -\mu^2. \]

And need to calculate the jacobian

\[d^4p = |J|^{-1} d\mathcal{E} dCdL_z d\mu \]
Growing a BH: Relativistic analysis

1. Generalize the definition of density:

\[J^\mu(x) \equiv \int f^{(4)}(p) \frac{p^\mu}{\mu} \sqrt{-g} \, d^4 p, \]

2. Use relativistic expressions to write it in terms of the invariants of motion (energy, angular momentum, ...).

3. Use relativistic expressions for the actions.

For Kerr:

\[E \equiv -u_0 = -g_{00} u^0 - g_{0\phi} u^\phi, \]
\[L_z \equiv u_\phi = g_{0\phi} u^0 + g_{\phi\phi} u^\phi, \]
\[C \equiv \Sigma^4 (u^\theta)^2 + \sin^{-2} \theta L_z^2 + a^2 \cos^2 \theta (1 - E^2), \]
\[g_{\mu\nu} p^\mu p^\nu = -\mu^2. \]

And need to calculate the jacobian

\[d^4 p = |J|^{-1} dE dC dL_z d\mu \]
Example: Schwarzschild BH

The positivity of the radial action determines the boundary conditions, \textit{including the effects of the horizon.}
Example: Schwarzschild BH

For a constant phase-space distribution:

\[
\rho = 10^8 \text{ GeV/cm}^3
\]

Gondolo & Silk
Example: Schwarzschild BH

For a more realistic, cuspy DM distribution:

\[
\log_{10}(r/R_S)
\]

\[
\log_{10}(\rho \text{ [GeV/cm}^3])
\]

Relativistic
Non-relativistic
DM annihilation
Initial Hernquist profile
Consequences

The gravitational potential is still dominated by the BH:

\[\log_{10} \left(\frac{r}{R_S} \right) \]

\[\log_{10} \left(\frac{m(r)}{M_\odot} \right) \]

- no annihilation
- with annihilation

[Graph showing the gravitational potential as a function of \(\log_{10} \left(\frac{r}{R_S} \right) \) and \(\log_{10} \left(\frac{m(r)}{M_\odot} \right) \).]
Consequences

No big changes for DM annihilation, but precession rates could be observable.

![Graph showing precession rates and semi-major axes](image-url)
Indirect detection

\[
\text{Flux} = \frac{\langle \sigma v \rangle dN_\gamma}{4\pi m_{dm}^2 dE_\gamma} \times \int_0^\infty \rho^2(r) dl
\]

- *Astrophysical factor* suggests looking at GC, dwarf spheroidals, . . .
- Photons and neutrinos point back to the source, while charged particles diffuse.
The annihilation cross-section

Annihilations in the halo are non-relativistic, \(\nu \approx 10^{-3} \).
The amplitude is analytical for \(k \to 0 \)

\[
\mathcal{M} \propto \int e^{ikx} V_{\text{Born}}(x)
\]

Including factors of \(k^l Y^m_l \) in a partial wave expansion, \(\sigma \propto k^{2l-1} \)

\[
\sigma \nu = a + bv^2 + \ldots
\]
The annihilation cross-section

Annihilations in the halo are non-relativistic, \(v \approx 10^{-3} \). The amplitude is analytical for \(k \to 0 \)

\[
\mathcal{M} \propto \int e^{ikx} V_{\text{Born}}(x)
\]

Including factors of \(k^l Y^m_l \) in a partial wave expansion, \(\sigma \propto k^{2l-1} \)

\[
\sigma v = a + bv^2 + \ldots
\]
The annihilation cross-section

Annihilations in the halo are non-relativistic, $v \approx 10^{-3}$. The amplitude is analytical for $k \to 0$

$$\mathcal{M} \propto \int e^{ikx} V_{\text{Born}}(x)$$

Including factors of $k^l Y_l^m$ in a partial wave expansion, $\sigma \propto k^{2l-1}$

$$\sigma v = a + bv^2 + \ldots$$
More complicated velocity dependence

If there are new light particles mediating long-range forces between the dark matter, an enhancement occurs at low velocities:

\[\sigma \to \sigma \times \frac{\pi \alpha}{v} \]

If annihilation proceeds near a resonant state,

\[\nu \sigma \propto \frac{1}{(v^2/4 + \Delta)^2 + \Gamma_A^2 (1 - \Delta)/4m_\chi^2} \]

Enhancements at low velocities, \(\nu \sim 10^{-3} \), different than at decoupling.
More complicated velocity dependence

If there are new light particles mediating long-range forces between the dark matter, an enhancement occurs at low velocities:

$$\sigma \rightarrow \sigma \times \frac{\pi \alpha}{v}$$

If annihilation proceeds near a resonant state,

$$v\sigma \propto \frac{1}{(v^2/4 + \Delta)^2 + \Gamma_A^2 (1 - \Delta)/4m^2_\chi}$$

Enhancements at low velocities, $v \sim 10^{-3}$, different than at decoupling.
More complicated velocity dependence

If there are new light particles mediating long-range forces between the dark matter, an enhancement occurs at low velocities:

\[\sigma \rightarrow \sigma \times \frac{\pi \alpha}{v} \]

If annihilation proceeds near a resonant state,

\[\nu \sigma \propto \frac{1}{(v^2/4 + \Delta)^2 + \Gamma_A^2(1 - \Delta)/4m^2_{\chi}} \]

Enhancements at low velocities, \(\nu \sim 10^{-3} \), different than at decoupling.
Substructure enhanced

Lattanzi & Silk
Substructure enhanced

Lattanzi & Silk
What went in calculating the flux?

The averaged cross-section

\[\langle \sigma v \rangle \rightarrow S(v) \langle \sigma v \rangle \]

But, the flux is

\[\Phi = \text{Rate} \times v_{\text{rel}} \]

We have to average this, using the dark matter velocity distribution.
What went in calculating the flux?

The averaged cross-section

$$\langle \sigma v \rangle \rightarrow S(v) \langle \sigma v \rangle$$

But, the flux is

$$\Phi = Rate \times v_{rel}$$

We have to average this, using the dark matter velocity distribution.
What went in calculating the flux?

The averaged cross-section

\[\langle \sigma v \rangle \rightarrow S(v) \langle \sigma v \rangle \]

But, the flux is

\[\Phi = Rate \times v_{rel} \]

We have to average this, using the dark matter velocity distribution.
How should we calculate the fluxes?

\[Flux \propto \int dv_{rel} dl_{los} f_{pair}(r, v_{rel}) \times \sigma v_{rel} \]

The usual approach assumes

\[f_{pair}(r, v_{rel}) = \rho^2(r) \times f_{MB}(v_{rel}) \]

See Robertson & Zentner for an approximate Jeans' based analysis.
How should we calculate the fluxes?

\[
\text{Flux} \propto \int d\nu_{\text{rel}} d\ell_{\text{los}} f_{\text{pair}}(r, \nu_{\text{rel}}) \times \sigma \nu_{\text{rel}}
\]

The usual approach assumes

\[
f_{\text{pair}}(r, \nu_{\text{rel}}) = \rho^2(r) \times f_{MB}(\nu_{rel})
\]

See Robertson & Zentner for an approximate Jeans' based analysis.
Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Kuhlen et al.
Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Kuhlen et al.
Obtaining the phase-space distribution

Assume that dark matter satisfies the collisionless Boltzmann equation,

\[\frac{df}{dt} = 0 \]

Very hard to solve! Only a few exact solutions known, found finding integrals of motion (
\textit{singular isothermal sphere}, Hernquist, Jaffe, . . .).

Taking velocity moments we obtain the Jeans’ equation:

\[v_c^2 = \frac{GM(r)}{r} = -\bar{v}_r^2 \left(\frac{d \log \nu}{d \log r} + \frac{d \log \bar{v}_r^2}{d \log r} + 2\beta \right). \]

Necessary condition, useful to obtain density profiles from observational data.
Assume that dark matter satisfies the collisionless Boltzmann equation,
\[
\frac{df}{dt} = 0
\]
Very hard to solve! Only a few exact solutions known, found finding integrals of motion (*singular isothermal sphere*, Hernquist, Jaffe, \ldots).
Taking velocity moments we obtain the Jeans’ equation:
\[
v_c^2 = \frac{GM(r)}{r} = -\bar{v}_f^2 \left(\frac{d \log \nu}{d \log r} + \frac{d \log \bar{v}_f^2}{d \log r} + 2\beta \right).
\]
Necessary condition, useful to obtain density profiles from observational data.
Eddington’s formula

Gives the phase space distribution, if we know the density profile:

\[
 f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \int_{0}^{\mathcal{E}} \frac{d\Psi}{\sqrt{\mathcal{E} - \Psi}} \frac{d^2\rho}{d\psi^2}.
\]

(6)

Given a profile (NFW, cored, . . .) we obtain the phase space distribution, which provides a full description of the dark matter distribution.

Check that \(\rho(r) \equiv \int d^3v f(\mathcal{E}) \).
Eddington’s formula

Gives the phase space distribution, if we know the density profile:

\[
f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \int_0^\mathcal{E} \frac{d\psi}{\sqrt{\mathcal{E} - \psi}} \frac{d^2\rho}{d\psi^2}.
\]

Given a profile (NFW, cored, . . .) we obtain the phase space distribution, which provides a full description of the dark matter distribution.

Check that \(\rho(r) \equiv \int d^3v \, f(\mathcal{E}). \)
Eddington’s formula

Gives the phase space distribution, if we know the density profile:

\[f(\mathcal{E}) = \frac{1}{\sqrt{8\pi^2}} \int_0^\mathcal{E} \frac{d\psi}{\sqrt{\mathcal{E} - \psi}} \frac{d^2\rho}{d\psi^2}. \] (6)

Given a profile (NFW, cored, . . .) we obtain the phase space distribution, which provides a full description of the dark matter distribution.

Check that \(\rho(r) \equiv \int d^3v \, f(\mathcal{E}) \).
The phase-space distribution

\[
\log(\tilde{f}/g(c))
\]

- NFW
- Einasto
- NFW + baryons
Deriving the velocity distribution

Now that we have the full distribution function, we can find the velocity distribution at each point:

\[P(v) = \frac{f(\psi - v^2/2)}{\rho(\psi)} \]

Check that \(\int P(v) dv = 1. \)
Deriving the velocity distribution

Now that we have the full distribution function, we can find the velocity distribution at each point:

\[P(v) = \frac{f \left(\psi - \frac{v^2}{2} \right)}{\rho(\psi)} \]

Check that \(\int P(v) dv = 1. \)
Velocity distribution

\[P_r(v) \text{ [(km/s)]}^{-1} \]

- 0.1 kpc
- 1 kpc
- 10 kpc

\[v \text{ [km/s]} \]

0 100 200 300 400 500
Obtaining the relative velocity distribution

We move to the CM, to obtain $P_{rel}(v_{rel})$:

$$f_{sp}(\vec{v}_1)f_{sp}(\vec{v}_2)d\vec{v}_1d\vec{v}_2 = f_{pair}(\vec{v}_{cm}, \vec{v}_{rel})d\vec{v}_{cm}d\vec{v}_{rel}. \quad (7)$$

$$f_{rv}(v_{rel}) = 4\pi v_{rel}^2 2\pi \int_{0}^{\infty} dv_{cm} v_{cm}^2 \int_{0}^{\pi} d\theta \sin(\theta)$$

$$\cdot f_{sp}\left(\sqrt{v_{rel}^2/4 + v_{cm}^2 + v_{rel}v_{cm}\cos(\theta)}\right)$$

$$\cdot f_{sp}\left(\sqrt{v_{rel}^2/4 + v_{cm}^2 - v_{rel}v_{cm}\cos(\theta)}\right). \quad (8)$$

Recover the standard results for a Maxwell-Boltzmann distribution.
Obtaining the relative velocity distribution

We move to the CM, to obtain $P_{rel}(v_{rel})$:

$$f_{sp}(\vec{v_1})f_{sp}(\vec{v_2})d\vec{v_1}d\vec{v_2} = f_{pair}(\vec{v}_{cm}, \vec{v}_{rel})d\vec{v}_{cm}d\vec{v}_{rel}. \quad (7)$$

$$f_{rv}(v_{rel}) = 4\pi v_{rel}^2 2\pi \int_0^\infty d\nu_{cm} \nu_{cm}^2 \int_0^\pi d\theta \sin(\theta) \cdot f_{sp} \left(\frac{v_{rel}^2}{4} + \nu_{cm}^2 + v_{rel} \nu_{cm} \cos(\theta) \right) \cdot f_{sp} \left(\frac{v_{rel}^2}{4} + \nu_{cm}^2 - v_{rel} \nu_{cm} \cos(\theta) \right). \quad (8)$$

Recover the standard results for a Maxwell-Boltzmann distribution.
Relative velocity distribution

\[P_{\text{rel}}(v_{\text{rel}}) \left[(\text{km/s})^{-1} \right] \]

- 0.1 kpc
- 1 kpc
- 10 kpc
We have all the ingredients to perform the los integration:

\[
\text{Flux} \propto \int dv_{\text{rel}} dl_{\text{los}} f_{\text{pair}}(r, v_{\text{rel}}) \times \sigma v_{\text{rel}}
\]

Or a volume integration, if we are interested in \(e^\pm \) yields in the center of the galaxy.
We have all the ingredients to perform the los integration:

\[
\text{Flux} \propto \int dv_{rel} dl_{los} f_{pair}(r, v_{rel}) \times \sigma v_{rel}
\]

Or a volume integration, if we are interested in e^{\pm} yields in the center of the galaxy.
Boost factor

Enhancements up to 1000!
Conclusions

- A full general relativistic treatment shows significant deviations of the DM distribution around a black hole. They could affect tests of no-hair theorems.
- Gamma-ray and neutrino fluxes might depend on the velocity distribution, which generically deviates from the naive Maxwell-Boltzmann approximation.
- Using the full phase space distribution from the Eddington inversion suggests that fluxes from the center of the halo are up to 10^3 times larger.
- Constraints on Sommerfeld enhanced models from IC, synchroton or diffuse backgrounds might have to be re-evaluated.
- The velocity distribution also affects direct detection rates.