Astrophysical issues in indirect DM detection

Julien Lavalle
CNRS

Lab. Univers & Particules de Montpellier (LUPM), France
Université Montpellier II – CNRS-IN2P3 (UMR 5299)

Service de Physique Théorique
Université Libre de Bruxelles – 19 IV 2013
Outline

* Introduction

* Practical examples of astrophysical issues (at the Galactic scale)
 => size of the GCR diffusion zone: relevant to antiprotons, antideuterons, (diffuse gamma-rays)
 => positron fraction: clarifying the role of local astrophysical sources
 => impact of DM inhomogeneities: boost + reinterpreting current constraints
 => diffuse gamma-rays

* Perspectives
Main arguments:
- Annihilation final states lead to: gamma-rays + antimatter
- γ-rays: lines, spatial + spectral distribution of signals vs bg
- Antimatter cosmic rays: secondary, therefore low bg
- DM-induced antimatter has specific spectral properties

But:
- Do we control the backgrounds?
- Antiprotons are secondaries, not necessarily positrons
- Do the natural DM particle models provide clean signatures?
Main arguments:
- Annihilation final states lead to: gamma-rays + antimatter
- γ-rays: lines, spatial + spectral distribution of signals vs bg
- Antimatter cosmic rays: secondary, therefore low bg
- DM-induced antimatter has specific spectral properties

But:
- Do we control the backgrounds?
- Antiprotons are secondaries, not necessarily positrons
- Do the natural DM particle models provide clean signatures?
Transport of Galactic cosmic rays
The standard picture

\[\partial_t \frac{dn}{dE} = Q(E, \vec{x}, t) \]
\[+ \left\{ \vec{\nabla} \left(K(E, \vec{x}) \vec{\nabla} - \vec{V}_c \right) \right\} \frac{dn}{dE} \]
\[- \left\{ \partial_E \left(\frac{dE}{dt} - \partial_E E^2 K_{pp} \partial_p E^{-2} \right) \right\} \frac{dn}{dE} \]
\[- \left\{ \Gamma_{\text{spal}} \right\} \frac{dn}{dE} \]

From Haslam et al data (1982)
Dark matter has long been discovered!

Agnese + (2013)
DAMA, CoGenT, CRESST ... + CDMSII(Si) versus XENON-10, XENON-100
→ DM around 10 GeV

Around the GC
Weniger +, Finkbeiner + (2012)
→ DM around 130 GeV

511 keV, Knödlseder/Weidenspointner + (2005 - 2008)
Boehm, Hooper + (2004) → DM around 1 MeV

HEAT/PAMELA/AMS positron excess
Bergström +, Cirelli + (2008) → DM around 300-1000 GeV

Hooper + (2012): gamma-rays + radio at GC
→ DM around 10 GeV
Dark matter has long been discovered!

HEAT/PAMELA/AMS positron excess
Bergström +, Cirelli + (2008) → DM around 300-1000 GeV

Agnese + (2013)
DAMA, CoGenT, CRESST ... + CDMSII(SI) versus XENON-10, XENON-100
→ DM around 10 GeV

All point toward different mass scales:
1 MeV / 10 GeV / 130 GeV / 500 GeV

Hard to explain with a single DM candidate
(except maybe for XDM, Weiner ++ 2004-2012, Cline +, etc.)

Around the GC
Weniger +, Finkbeiner + (2012)
→ DM around 130 GeV

X-ray binaries + radioactive species
511 keV, Knödlseder/Weidenspointner + (2005 - 2008)
Boehm, Hooper + (2004) → DM around 1 MeV

HEAT/PAMELA/AMS positron excess
Bergström +, Cirelli + (2008) → DM around 300-1000 GeV

Close to threshold: Systematics?

Pulsars?

Astro contribs?

Near threshold: Systematics?
* Instrumental effects (not our job)

* Check consistency with complementary signals
 => multi-messenger analyses (multiwavelength photons, antimatter CRs, neutrinos)
 => multi-source analyses (MW, Dwarf galaxies,)
 => (other detection methods: LHC+direct+indirect+early universe+etc.)

* Understand / quantify theoretical uncertainties (for discovery as well as constraints)
 => eg CR transport, DM distribution, Galactic components

* Understand / quantify backgrounds
 => astrophysical sources / mechanisms

NB: Fermi + HESS2 + AMS02 + CTA => beginning of precision era in GeV-TeV astrophysics
Focus on antinuclei: antiproton constraints

DAMA+CDMS+COGENT mass regions
(+ GC fit by Hooper+)
=> WIMP mass ~10 GeV

Couplings to quarks => annihilation may produce antiprotons (not generic for Majorana fermions, only s-wave contributions)
Large antiproton flux expected (scales like 1/m^2)

** Uncertainties due to the size of the diffusion zone?

Lavalle (2010)
Impact of the size of the diffusion zone

=> attempts to bracket theoretical uncertainties

Besides best fit transport model (dubbed med), proposal for 2 extreme configurations:

\[\min: L = 1 \text{ kpc} \]
\[\max: L = 15 \text{ kpc} \]

minimizing and maximizing the DM-induced fluxes, respectively.

NB: much less effect on high-energy positrons (Lavalle+ 07, Delahaye+ 08) – short propagation scale.

The game people usually play:
1) you want your model to survive antiproton constraints:
 => take a small L
2) you want to advertise your model for detection:
 => take L from med to max.
Where do constraints on L come from?

Putze+ (2011)

Secondary/Primary ratios:

Degeneracy between K and L!

On the blackboard
Where do constraints on L come from?

Putze+ (2011)

Strong+ (2004)

Breaking degeneracy with radioactive secondaries
\Rightarrow lifetime too short to reach L
Uncertainties in the diffusion halo size?
Quick digression towards positrons

Secondary positrons
(eg. Delahaye+09, Lavalle 11)

\[\phi_{e^+} \propto \frac{1}{\sqrt{K_0}} \]

\[\frac{K_0}{L} \approx C_{st} \]

Small L models in tension with positron data

=> L > 1 kpc => Very conservative statement!

Perspectives:
- PAMELA/AMS data still to come

=> Ongoing work with Maurin and Putze
What else on K and L?
(on the spectral hardening)

Could be due to a change in diffusion properties (eg Blasi+ 12)

=> K has different slope > 100 GeV
(from 0.7 to 0.3)

=> impact on secondary CR production

ATIC Collab (2006-2012)
Cream Collab (2010-2011)

Blasi+ (2012)
Short comments on the positron fraction

We know pulsars can make it in principle. Going to realistic modeling is complicated (eg Delahaye et al 10).

=> separate distant/local sources, and accommodate the full data (e-, e+, e+e-, e+/e+e-) …

=> Pulsar wind nebulae (PWNe) as positron/electron sources

=> SNRs as electron sources (each PWN must be paired with an SNR)

=> you may fit amplitudes / spectral indices … then what?

** Observational constraints!

=> use pulsar period, multiwavelength data for all observed sources … but … not that simple.
Modeling the electron/positron sources?

Different timescales:
1) E-loss time > source age > transport time
2) transport time >> photon time
=> cannot directly use photon data
=> requires dynamical models for sources (time evolution)

Very complicated problem:
1) photon data: CRs which are mostly still confined in sources (escape issue)
2) coupled evolution of magnetic fields and CR density

Some attempts at the source level (eg Ohira+ 10-11), but much more work necessary.

Work in prep. with Y. Gallant and A. Marcowith (LUPM).

Crab nebula (ESA) (just for illustration, not relevant for e+/e-)

Horns & Aharonian (04) Crab SED

photon obs. time = \(\frac{d}{c} \approx 300 \text{ yr} \left[\frac{d}{100 \text{ pc}} \right] \)

transport time \(\approx \frac{d^2}{K(E)} \approx 30 \text{ kyr} \left[\frac{E}{1 \text{ TeV}} \right]^{-1/2} \left[\frac{d}{100 \text{ pc}} \right]^2 \)

E-loss time \(= \int_{E}^{E_{s}} dE' b(E') \approx 300 \text{ kyr} @ 1 \text{ TeV} \)
Anisotropy as a test?

Caveats:

* model-dependent (diffusion halo size again!)
* contributions of other sources (e.g., dipole from GC/antiGC asymmetry in the source distribution)
* cancellations might occur in the dipole

Still:

* physically meaningful information
* should be provided for all CR species separately (e.g., positrons, antiprotons, etc.)
* will provide constraints to the full transport model
* AMS may reach the necessary sensitivity
DM interpretation of the positron excess?
(if you still want to believe ...)

Method:
* background (!!!) + annihilation cross-section as free params.

Conclusions:
* severe antiproton constraints => multi-TeV or leptophilic models

But …
DM interpretation of the positron excess? (if you still want to believe ...)

Method:
* background (!!!) + annihilation cross-section as free params.

Conclusions:
* severe antiproton constraints => multi-TeV or leptophilic models

But ... local DM: 0.3 → 0.4 GeV/cm³, DM subhalos => BF ~ 2-3
=> factor of 4-5 possible
Boost factor? ... well, in fact, boost factors

\[B = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \geq 1 \]

The volume over which the average is performed depends on the cosmic messenger!
Boost factor? ... well, in fact, boost factors

The volume over which the average is performed depends on the cosmic messenger!

\[B = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \geq 1 \]

1) **Prompt gamma-rays**: point a telescope to a certain direction, and average over a volume set by the angular resolution
Boost factor? ... well, in fact, boost factors

The volume over which the average is performed depends on the cosmic messenger!

\[B = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \geq 1 \]

1) **Prompt gamma-rays:** point a telescope to a certain direction, and average over a volume set by the angular resolution
 a) To the Galactic center: the smooth halo is singular, clumps have no effect, \(B \sim 1 \)
Boost factor? ... well, in fact, boost factors

The volume over which the average is performed depends on the cosmic messenger!

1) **Prompt gamma-rays:** point a telescope to a certain direction, and average over a volume set by the angular resolution
 a) To the Galactic center: the smooth halo is singular, clumps have no effect, $B \sim 1$
 b) To high latitudes/longitudes: the smooth halo contributes much less, $B \gg 1$
Boost factor? ... well, in fact, boost factors

\[\mathcal{B} = \frac{\langle \rho^2 \rangle}{\langle \rho \rangle^2} \geq 1 \]

The volume over which the average is performed depends on the cosmic messenger!

1) **Prompt gamma-rays**: point a telescope to a certain direction, and average over a volume set by the angular resolution
 - a) To the Galactic center: the smooth halo is singular, clumps have no effect, \(\mathcal{B} \sim 1 \)
 - b) To high latitudes/longitudes: the smooth halo contributes much less, \(\mathcal{B} \gg 1 \)

2) **Cosmic rays**: stochastic motion, define energy-dependent propagation scale.
 - a) Large propagation scale: if enough to feel regions close to GC, then \(\mathcal{B} \sim 1 \)
 - b) Small propagation scale: if we are sitting on a clump, then \(\mathcal{B} \gg 1 \), otherwise \(\mathcal{B} \) moderate
Impact of subhalos on the positron flux

If DM is cold, subhalos must exist and survive tidal stripping (e.g., Berezinsky+ 05).

Very small masses can be achieved, fixed by the WIMP free streaming scale (e.g., Bringmann 09).

Properties studied in cosmological simulations, but limited by resolution => \(M > 104 \) Msun only.

Latest dedicated studies show profiles more cuspy than NFW at cut-off mass (e.g., Ishiyama+ 10, Anderhalden+ 13).

=> PAMELA could be explained by 100 GeV WIMPs (not AMS).
Assumptions:
- homogeneous/isotropic diffusion coefficient
- continuous distribution of sources; CRs escape sources with ad-hoc broken power laws (indices are free parameters)
- ISM from HI, H2 (CO), HII (Lazio & Cordes), dust correlations … maps

Results:
- global fit to the data not too bad (10-20% residuals), except GC and G-edges (30-40%)
- large magnetic halo preferred, $L \sim 10$ kpc
- Caveats: potentially large (and degenerate) systematic errors, but physical interpretation meaningful \Rightarrow encouraging
Diffuse emission and CRs: theoretical uncertainties

(T. Delahaye, IFT-LAPTh)

3D model of H2

Diff with Galprop (hadronic contribution)
~ 50% in the disk!

Impact of ISM modeling

1102.0744

Advantages
* Good sensitivity, sampling & uniformity of CO survey
* Kinematic resolution toward GC

Limitations
* Limited resolution of SPH simulations (problem near GC)
* Single value of X_{CO}

Comments
* Very thorough & lucid analysis
* Globally reliable, except within ~ 1 kpc from GC
* Model available online

Julien Lavalle, Service de Physique Théorique, ULB, 19 IV 2013
Diffuse emission: a top bottom approach

Cosmological simulation:
self-consistent modeling of a galaxy (DM, gas, stars)

Advantages:
* all ingredients are identified and localized (sources and gas)
 * check the relevance of current assumptions

Limits: spatial resolution

=> preliminary results encouraging, work in progress

Skymaps:
DM (100 GeV b-bbar) – astro processes – DM/astro

Compare e.g. with Weniger 12
(optimized region for 130 GeV line)
Conclusions

- Current GCR models allow for a reasonable understanding of (i) the local CR budget and (ii) the Galactic diffuse emission(s)
- Nota: there is no “standard model” for GCRs! (many inputs, lucidity is required)
- Not accurate enough for specific regions (e.g. GC), but still very useful
- Current models have reached their limits
 => prediction power saturates, need to put more physics in ... at the price of increasing theoretical uncertainties (though expected to decrease in the future)

For DM:
- Best targets remain:
 1) DSPhs as observed in gamma-rays + gamma-ray lines
 2) neutrinos from the Sun
- Antimatter CRs + diffuse emissions more relevant to constraints: astrophysics pollutes a lot, and is not completely controlled yet
*** Complementarity with other detection methods (direct/LHC) is definitely the best strategy.
Conclusions

- Current GCR models allow for a reasonable understanding of (i) the local CR budget and (ii) the Galactic diffuse emission(s)
- Nota: there is no “standard model” for GCRs! (many inputs, lucidity is required)
- Not accurate enough for specific regions (e.g. GC), but still very useful
- Current models have reached their limits
 => prediction power saturates, need to put more physics in ... at the price of increasing theoretical uncertainties (though expected to decrease in the future)

For DM:
- Best targets remain:
 1) DSPhs as observed in gamma-rays + gamma-ray lines
 2) neutrinos from the Sun
- Antimatter CRs + diffuse emissions more relevant to constraints: astrophysics pollutes a lot, and is not completely controlled yet

*** Complementarity with other detection methods (direct/LHC) is definitely the best strategy.